Upload load_data.ipynb
Browse files- load_data.ipynb +755 -0
load_data.ipynb
ADDED
|
@@ -0,0 +1,755 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "12d87b30",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"# Load Data\n",
|
| 9 |
+
"This notebook loads and preproceses all necessary data, namely the following.\n",
|
| 10 |
+
"* OpenWebTextCorpus: for base DistilBERT model\n",
|
| 11 |
+
"* SQuAD datasrt: for Q&A\n",
|
| 12 |
+
"* Natural Questions (needs to be downloaded externally but is preprocessed here): for Q&A\n",
|
| 13 |
+
"* HotPotQA: for Q&A"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"cell_type": "code",
|
| 18 |
+
"execution_count": 4,
|
| 19 |
+
"id": "7c82d7fa",
|
| 20 |
+
"metadata": {},
|
| 21 |
+
"outputs": [],
|
| 22 |
+
"source": [
|
| 23 |
+
"from tqdm.auto import tqdm\n",
|
| 24 |
+
"from datasets import load_dataset\n",
|
| 25 |
+
"import os\n",
|
| 26 |
+
"import pandas as pd\n",
|
| 27 |
+
"import random"
|
| 28 |
+
]
|
| 29 |
+
},
|
| 30 |
+
{
|
| 31 |
+
"cell_type": "markdown",
|
| 32 |
+
"id": "1737f219",
|
| 33 |
+
"metadata": {},
|
| 34 |
+
"source": [
|
| 35 |
+
"## Distilbert Data\n",
|
| 36 |
+
"In the following, we download the english openwebtext dataset from huggingface (https://huggingface.co/datasets/openwebtext). The dataset is provided by Aaron Gokaslan and Vanya Cohen from Brown University (https://skylion007.github.io/OpenWebTextCorpus/).\n",
|
| 37 |
+
"\n",
|
| 38 |
+
"We first load the data, investigate the structure and write the dataset into files of each 10 000 texts."
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"id": "cce7623c",
|
| 45 |
+
"metadata": {},
|
| 46 |
+
"outputs": [],
|
| 47 |
+
"source": [
|
| 48 |
+
"ds = load_dataset(\"openwebtext\")"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": 4,
|
| 54 |
+
"id": "678a5e86",
|
| 55 |
+
"metadata": {},
|
| 56 |
+
"outputs": [
|
| 57 |
+
{
|
| 58 |
+
"data": {
|
| 59 |
+
"text/plain": [
|
| 60 |
+
"DatasetDict({\n",
|
| 61 |
+
" train: Dataset({\n",
|
| 62 |
+
" features: ['text'],\n",
|
| 63 |
+
" num_rows: 8013769\n",
|
| 64 |
+
" })\n",
|
| 65 |
+
"})"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
"execution_count": 4,
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"output_type": "execute_result"
|
| 71 |
+
}
|
| 72 |
+
],
|
| 73 |
+
"source": [
|
| 74 |
+
"# we have a text-only training dataset with 8 million entries\n",
|
| 75 |
+
"ds"
|
| 76 |
+
]
|
| 77 |
+
},
|
| 78 |
+
{
|
| 79 |
+
"cell_type": "code",
|
| 80 |
+
"execution_count": 5,
|
| 81 |
+
"id": "b141bce7",
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"outputs": [],
|
| 84 |
+
"source": [
|
| 85 |
+
"# create necessary folders\n",
|
| 86 |
+
"os.mkdir('data')\n",
|
| 87 |
+
"os.mkdir('data/original')"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"id": "ca94f995",
|
| 94 |
+
"metadata": {},
|
| 95 |
+
"outputs": [],
|
| 96 |
+
"source": [
|
| 97 |
+
"# save text in chunks of 10000 samples\n",
|
| 98 |
+
"text = []\n",
|
| 99 |
+
"i = 0\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"for sample in tqdm(ds['train']):\n",
|
| 102 |
+
" # replace all newlines\n",
|
| 103 |
+
" sample = sample['text'].replace('\\n','')\n",
|
| 104 |
+
" \n",
|
| 105 |
+
" # append cleaned sample to all texts\n",
|
| 106 |
+
" text.append(sample)\n",
|
| 107 |
+
" \n",
|
| 108 |
+
" # if we processed 10000 samples, write them to a file and start over\n",
|
| 109 |
+
" if len(text) == 10000:\n",
|
| 110 |
+
" with open(f\"data/original/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 111 |
+
" f.write('\\n'.join(text))\n",
|
| 112 |
+
" text = []\n",
|
| 113 |
+
" i += 1 \n",
|
| 114 |
+
"\n",
|
| 115 |
+
"# write remaining samples to a file\n",
|
| 116 |
+
"with open(f\"data/original/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 117 |
+
" f.write('\\n'.join(text))"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "markdown",
|
| 122 |
+
"id": "f131dcfc",
|
| 123 |
+
"metadata": {},
|
| 124 |
+
"source": [
|
| 125 |
+
"### Testing\n",
|
| 126 |
+
"If we load the first file, we should get a file that is 10000 lines long and has one column\n",
|
| 127 |
+
"\n",
|
| 128 |
+
"As we do not preprocess the data in any way, but just write the read text into the file, this is all testing necessary"
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"cell_type": "code",
|
| 133 |
+
"execution_count": 13,
|
| 134 |
+
"id": "df50af74",
|
| 135 |
+
"metadata": {},
|
| 136 |
+
"outputs": [],
|
| 137 |
+
"source": [
|
| 138 |
+
"with open(\"data/original/text_0.txt\", 'r', encoding='utf-8') as f:\n",
|
| 139 |
+
" lines = f.read().split('\\n')\n",
|
| 140 |
+
"lines = pd.DataFrame(lines)"
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"cell_type": "code",
|
| 145 |
+
"execution_count": 14,
|
| 146 |
+
"id": "8ddb0085",
|
| 147 |
+
"metadata": {},
|
| 148 |
+
"outputs": [
|
| 149 |
+
{
|
| 150 |
+
"name": "stdout",
|
| 151 |
+
"output_type": "stream",
|
| 152 |
+
"text": [
|
| 153 |
+
"Passed\n"
|
| 154 |
+
]
|
| 155 |
+
}
|
| 156 |
+
],
|
| 157 |
+
"source": [
|
| 158 |
+
"assert lines.shape==(10000,1)\n",
|
| 159 |
+
"print(\"Passed\")"
|
| 160 |
+
]
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"cell_type": "markdown",
|
| 164 |
+
"id": "1a65b268",
|
| 165 |
+
"metadata": {},
|
| 166 |
+
"source": [
|
| 167 |
+
"## SQuAD Data\n",
|
| 168 |
+
"In the following, we download the SQuAD dataset from huggingface (https://huggingface.co/datasets/squad). It was initially provided by Rajpurkar et al. from Stanford University.\n",
|
| 169 |
+
"\n",
|
| 170 |
+
"We again load the dataset and store it in chunks of 1000 into files."
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": null,
|
| 176 |
+
"id": "6750ce6e",
|
| 177 |
+
"metadata": {},
|
| 178 |
+
"outputs": [],
|
| 179 |
+
"source": [
|
| 180 |
+
"dataset = load_dataset(\"squad\")"
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
{
|
| 184 |
+
"cell_type": "code",
|
| 185 |
+
"execution_count": null,
|
| 186 |
+
"id": "65a7ee23",
|
| 187 |
+
"metadata": {},
|
| 188 |
+
"outputs": [],
|
| 189 |
+
"source": [
|
| 190 |
+
"os.mkdir(\"data/training_squad\")\n",
|
| 191 |
+
"os.mkdir(\"data/test_squad\")"
|
| 192 |
+
]
|
| 193 |
+
},
|
| 194 |
+
{
|
| 195 |
+
"cell_type": "code",
|
| 196 |
+
"execution_count": null,
|
| 197 |
+
"id": "f6ebf63e",
|
| 198 |
+
"metadata": {},
|
| 199 |
+
"outputs": [],
|
| 200 |
+
"source": [
|
| 201 |
+
"# we already have a training and test split. Each sample has an id, title, context, question and answers.\n",
|
| 202 |
+
"dataset"
|
| 203 |
+
]
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"cell_type": "code",
|
| 207 |
+
"execution_count": null,
|
| 208 |
+
"id": "f67ae448",
|
| 209 |
+
"metadata": {},
|
| 210 |
+
"outputs": [],
|
| 211 |
+
"source": [
|
| 212 |
+
"# answers are provided like that - we need to extract answer_end for the model\n",
|
| 213 |
+
"dataset['train']['answers'][0]"
|
| 214 |
+
]
|
| 215 |
+
},
|
| 216 |
+
{
|
| 217 |
+
"cell_type": "code",
|
| 218 |
+
"execution_count": null,
|
| 219 |
+
"id": "101cd650",
|
| 220 |
+
"metadata": {},
|
| 221 |
+
"outputs": [],
|
| 222 |
+
"source": [
|
| 223 |
+
"# column contains the split (either train or validation), save_dir is the directory\n",
|
| 224 |
+
"def save_samples(column, save_dir):\n",
|
| 225 |
+
" text = []\n",
|
| 226 |
+
" i = 0\n",
|
| 227 |
+
"\n",
|
| 228 |
+
" for sample in tqdm(dataset[column]):\n",
|
| 229 |
+
" \n",
|
| 230 |
+
" # preprocess the context and question by removing the newlines\n",
|
| 231 |
+
" context = sample['context'].replace('\\n','')\n",
|
| 232 |
+
" question = sample['question'].replace('\\n','')\n",
|
| 233 |
+
"\n",
|
| 234 |
+
" # get the answer as text and start character index\n",
|
| 235 |
+
" answer_text = sample['answers']['text'][0]\n",
|
| 236 |
+
" answer_start = str(sample['answers']['answer_start'][0])\n",
|
| 237 |
+
" \n",
|
| 238 |
+
" text.append([context, question, answer_text, answer_start])\n",
|
| 239 |
+
"\n",
|
| 240 |
+
" # we choose chunks of 1000\n",
|
| 241 |
+
" if len(text) == 1000:\n",
|
| 242 |
+
" with open(f\"data/{save_dir}/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 243 |
+
" f.write(\"\\n\".join([\"\\t\".join(t) for t in text]))\n",
|
| 244 |
+
" text = []\n",
|
| 245 |
+
" i += 1\n",
|
| 246 |
+
"\n",
|
| 247 |
+
" # save remaining\n",
|
| 248 |
+
" with open(f\"data/{save_dir}/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 249 |
+
" f.write(\"\\n\".join([\"\\t\".join(t) for t in text]))\n",
|
| 250 |
+
"\n",
|
| 251 |
+
"save_samples(\"train\", \"training_squad\")\n",
|
| 252 |
+
"save_samples(\"validation\", \"test_squad\")\n",
|
| 253 |
+
" "
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "markdown",
|
| 258 |
+
"id": "67044d13",
|
| 259 |
+
"metadata": {
|
| 260 |
+
"collapsed": false,
|
| 261 |
+
"jupyter": {
|
| 262 |
+
"outputs_hidden": false
|
| 263 |
+
}
|
| 264 |
+
},
|
| 265 |
+
"source": [
|
| 266 |
+
"### Testing\n",
|
| 267 |
+
"If we load a file, we should get a file with 10000 lines and 4 columns\n",
|
| 268 |
+
"\n",
|
| 269 |
+
"Also, we want to assure the correct interval. Hence, the second test."
|
| 270 |
+
]
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"cell_type": "code",
|
| 274 |
+
"execution_count": null,
|
| 275 |
+
"id": "446281cf",
|
| 276 |
+
"metadata": {},
|
| 277 |
+
"outputs": [],
|
| 278 |
+
"source": [
|
| 279 |
+
"with open(\"data/training_squad/text_0.txt\", 'r', encoding='utf-8') as f:\n",
|
| 280 |
+
" lines = f.read().split('\\n')\n",
|
| 281 |
+
" \n",
|
| 282 |
+
"lines = pd.DataFrame([line.split(\"\\t\") for line in lines], columns=[\"context\", \"question\", \"answer\", \"answer_start\"])"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"cell_type": "code",
|
| 287 |
+
"execution_count": null,
|
| 288 |
+
"id": "ccd5c650",
|
| 289 |
+
"metadata": {},
|
| 290 |
+
"outputs": [],
|
| 291 |
+
"source": [
|
| 292 |
+
"assert lines.shape==(1000,4)\n",
|
| 293 |
+
"print(\"Passed\")"
|
| 294 |
+
]
|
| 295 |
+
},
|
| 296 |
+
{
|
| 297 |
+
"cell_type": "code",
|
| 298 |
+
"execution_count": null,
|
| 299 |
+
"id": "2c9e4b70",
|
| 300 |
+
"metadata": {},
|
| 301 |
+
"outputs": [],
|
| 302 |
+
"source": [
|
| 303 |
+
"# we assert that we have the right interval\n",
|
| 304 |
+
"for ind, line in lines.iterrows():\n",
|
| 305 |
+
" sample = line\n",
|
| 306 |
+
" answer_start = int(sample['answer_start'])\n",
|
| 307 |
+
" assert sample['context'][answer_start:answer_start+len(sample['answer'])] == sample['answer']\n",
|
| 308 |
+
"print(\"Passed\")"
|
| 309 |
+
]
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"cell_type": "markdown",
|
| 313 |
+
"id": "02265ace",
|
| 314 |
+
"metadata": {},
|
| 315 |
+
"source": [
|
| 316 |
+
"## Natural Questions Dataset\n",
|
| 317 |
+
"* Download from https://ai.google.com/research/NaturalQuestions via gsutil (the one from huggingface has 134.92GB, the one from google cloud is in archives)\n",
|
| 318 |
+
"* Use gunzip to get some samples - we then get `.jsonl`files\n",
|
| 319 |
+
"* The dataset is a lot more messy, as it is just wikipedia articles with all web artifacts\n",
|
| 320 |
+
" * I cleaned the html tags\n",
|
| 321 |
+
" * Also I chose a random interval (containing the answer) from the dataset\n",
|
| 322 |
+
" * We can't send the whole text into the model anyways"
|
| 323 |
+
]
|
| 324 |
+
},
|
| 325 |
+
{
|
| 326 |
+
"cell_type": "code",
|
| 327 |
+
"execution_count": null,
|
| 328 |
+
"id": "f3bce0c1",
|
| 329 |
+
"metadata": {},
|
| 330 |
+
"outputs": [],
|
| 331 |
+
"source": [
|
| 332 |
+
"from pathlib import Path\n",
|
| 333 |
+
"paths = [str(x) for x in Path('data/natural_questions/v1.0/train/').glob('**/*.jsonl')]"
|
| 334 |
+
]
|
| 335 |
+
},
|
| 336 |
+
{
|
| 337 |
+
"cell_type": "code",
|
| 338 |
+
"execution_count": null,
|
| 339 |
+
"id": "e9c58c00",
|
| 340 |
+
"metadata": {},
|
| 341 |
+
"outputs": [],
|
| 342 |
+
"source": [
|
| 343 |
+
"os.mkdir(\"data/natural_questions_train\")"
|
| 344 |
+
]
|
| 345 |
+
},
|
| 346 |
+
{
|
| 347 |
+
"cell_type": "code",
|
| 348 |
+
"execution_count": null,
|
| 349 |
+
"id": "0ed7ba6c",
|
| 350 |
+
"metadata": {},
|
| 351 |
+
"outputs": [],
|
| 352 |
+
"source": [
|
| 353 |
+
"import re\n",
|
| 354 |
+
"\n",
|
| 355 |
+
"# clean html tags\n",
|
| 356 |
+
"CLEANR = re.compile('<.+?>')\n",
|
| 357 |
+
"# clean multiple spaces\n",
|
| 358 |
+
"CLEANMULTSPACE = re.compile('(\\s)+')\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"# the function takes an html documents and removes artifacts\n",
|
| 361 |
+
"def cleanhtml(raw_html):\n",
|
| 362 |
+
" # tags\n",
|
| 363 |
+
" cleantext = re.sub(CLEANR, '', raw_html)\n",
|
| 364 |
+
" # newlines\n",
|
| 365 |
+
" cleantext = cleantext.replace(\"\\n\", '')\n",
|
| 366 |
+
" # tabs\n",
|
| 367 |
+
" cleantext = cleantext.replace(\"\\t\", '')\n",
|
| 368 |
+
" # character encodings\n",
|
| 369 |
+
" cleantext = cleantext.replace(\"'\", \"'\")\n",
|
| 370 |
+
" cleantext = cleantext.replace(\"&\", \"'\")\n",
|
| 371 |
+
" cleantext = cleantext.replace(\""\", '\"')\n",
|
| 372 |
+
" # multiple spaces\n",
|
| 373 |
+
" cleantext = re.sub(CLEANMULTSPACE, ' ', cleantext)\n",
|
| 374 |
+
" # documents end with this tags, if it is present in the string, cut it off\n",
|
| 375 |
+
" idx = cleantext.find(\"<!-- NewPP limit\")\n",
|
| 376 |
+
" if idx > -1:\n",
|
| 377 |
+
" cleantext = cleantext[:idx]\n",
|
| 378 |
+
" return cleantext.strip()"
|
| 379 |
+
]
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"cell_type": "code",
|
| 383 |
+
"execution_count": null,
|
| 384 |
+
"id": "66ca19ac",
|
| 385 |
+
"metadata": {},
|
| 386 |
+
"outputs": [],
|
| 387 |
+
"source": [
|
| 388 |
+
"import json\n",
|
| 389 |
+
"\n",
|
| 390 |
+
"# file count\n",
|
| 391 |
+
"i = 0\n",
|
| 392 |
+
"data = []\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"# iterate over all json files\n",
|
| 395 |
+
"for path in paths:\n",
|
| 396 |
+
" print(path)\n",
|
| 397 |
+
" # read file and store as list (this requires much memory, as the files are huge)\n",
|
| 398 |
+
" with open(path, 'r') as json_file:\n",
|
| 399 |
+
" json_list = list(json_file)\n",
|
| 400 |
+
" \n",
|
| 401 |
+
" # process every context, question, answer pair\n",
|
| 402 |
+
" for json_str in json_list:\n",
|
| 403 |
+
" result = json.loads(json_str)\n",
|
| 404 |
+
"\n",
|
| 405 |
+
" # append a question mark - SQuAD questions end with a qm too\n",
|
| 406 |
+
" question = result['question_text'] + \"?\"\n",
|
| 407 |
+
" \n",
|
| 408 |
+
" # some question do not contain an answer - we do not need them\n",
|
| 409 |
+
" if(len(result['annotations'][0]['short_answers'])==0):\n",
|
| 410 |
+
" continue\n",
|
| 411 |
+
"\n",
|
| 412 |
+
" # get true start/end byte\n",
|
| 413 |
+
" true_start = result['annotations'][0]['short_answers'][0]['start_byte']\n",
|
| 414 |
+
" true_end = result['annotations'][0]['short_answers'][0]['end_byte']\n",
|
| 415 |
+
"\n",
|
| 416 |
+
" # convert to bytes\n",
|
| 417 |
+
" byte_encoding = bytes(result['document_html'], encoding='utf-8')\n",
|
| 418 |
+
" \n",
|
| 419 |
+
" # the document is the whole wikipedia article, we randomly choose an appropriate part (containing the\n",
|
| 420 |
+
" # answer): we have 512 tokens as the input for the model - 4000 bytes lead to a good length\n",
|
| 421 |
+
" max_back = 3500 if true_start >= 3500 else true_start\n",
|
| 422 |
+
" first = random.randint(int(true_start)-max_back, int(true_start))\n",
|
| 423 |
+
" end = first + 3500 + true_end - true_start\n",
|
| 424 |
+
" \n",
|
| 425 |
+
" # get chosen context\n",
|
| 426 |
+
" cleanbytes = byte_encoding[first:end]\n",
|
| 427 |
+
" # decode back to text - if our end byte is the middle of a word, we ignore it and cut it off\n",
|
| 428 |
+
" cleantext = bytes.decode(cleanbytes, errors='ignore')\n",
|
| 429 |
+
" # clean html tags\n",
|
| 430 |
+
" cleantext = cleanhtml(cleantext)\n",
|
| 431 |
+
"\n",
|
| 432 |
+
" # find the true answer\n",
|
| 433 |
+
" answer_start = cleanbytes.find(byte_encoding[true_start:true_end])\n",
|
| 434 |
+
" true_answer = bytes.decode(cleanbytes[answer_start:answer_start+(true_end-true_start)])\n",
|
| 435 |
+
" \n",
|
| 436 |
+
" # clean html tags\n",
|
| 437 |
+
" true_answer = cleanhtml(true_answer)\n",
|
| 438 |
+
" \n",
|
| 439 |
+
" start_ind = cleantext.find(true_answer)\n",
|
| 440 |
+
" \n",
|
| 441 |
+
" # If cleaning the string makes the answer not findable skip it\n",
|
| 442 |
+
" # this hardly ever happens, except if there is an emense amount of web artifacts\n",
|
| 443 |
+
" if start_ind == -1:\n",
|
| 444 |
+
" continue\n",
|
| 445 |
+
" \n",
|
| 446 |
+
" data.append([cleantext, question, true_answer, str(start_ind)])\n",
|
| 447 |
+
"\n",
|
| 448 |
+
" if len(data) == 1000:\n",
|
| 449 |
+
" with open(f\"data/natural_questions_train/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 450 |
+
" f.write(\"\\n\".join([\"\\t\".join(t) for t in data]))\n",
|
| 451 |
+
" i += 1\n",
|
| 452 |
+
" data = []\n",
|
| 453 |
+
"with open(f\"data/natural_questions_train/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 454 |
+
" f.write(\"\\n\".join([\"\\t\".join(t) for t in data]))"
|
| 455 |
+
]
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"cell_type": "markdown",
|
| 459 |
+
"id": "30f26b4e",
|
| 460 |
+
"metadata": {},
|
| 461 |
+
"source": [
|
| 462 |
+
"### Testing\n",
|
| 463 |
+
"In the following, we first check if the shape of the file is correct.\n",
|
| 464 |
+
"\n",
|
| 465 |
+
"Then we iterate over the file and check if the answers according to the file are the same as in the original file."
|
| 466 |
+
]
|
| 467 |
+
},
|
| 468 |
+
{
|
| 469 |
+
"cell_type": "code",
|
| 470 |
+
"execution_count": null,
|
| 471 |
+
"id": "490ac0db",
|
| 472 |
+
"metadata": {},
|
| 473 |
+
"outputs": [],
|
| 474 |
+
"source": [
|
| 475 |
+
"with open(\"data/natural_questions_train/text_0.txt\", 'r', encoding='utf-8') as f:\n",
|
| 476 |
+
" lines = f.read().split('\\n')\n",
|
| 477 |
+
" \n",
|
| 478 |
+
"lines = pd.DataFrame([line.split(\"\\t\") for line in lines], columns=[\"context\", \"question\", \"answer\", \"answer_start\"])"
|
| 479 |
+
]
|
| 480 |
+
},
|
| 481 |
+
{
|
| 482 |
+
"cell_type": "code",
|
| 483 |
+
"execution_count": null,
|
| 484 |
+
"id": "0d7cc3ee",
|
| 485 |
+
"metadata": {},
|
| 486 |
+
"outputs": [],
|
| 487 |
+
"source": [
|
| 488 |
+
"assert lines.shape == (1000, 4)\n",
|
| 489 |
+
"print(\"Passed\")"
|
| 490 |
+
]
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"cell_type": "code",
|
| 494 |
+
"execution_count": null,
|
| 495 |
+
"id": "0fd8a854",
|
| 496 |
+
"metadata": {},
|
| 497 |
+
"outputs": [],
|
| 498 |
+
"source": [
|
| 499 |
+
"with open(\"data/natural_questions/v1.0/train/nq-train-00.jsonl\", 'r') as json_file:\n",
|
| 500 |
+
" json_list = list(json_file)[:500]\n",
|
| 501 |
+
"del json_file"
|
| 502 |
+
]
|
| 503 |
+
},
|
| 504 |
+
{
|
| 505 |
+
"cell_type": "code",
|
| 506 |
+
"execution_count": null,
|
| 507 |
+
"id": "170bff30",
|
| 508 |
+
"metadata": {},
|
| 509 |
+
"outputs": [],
|
| 510 |
+
"source": [
|
| 511 |
+
"lines_index = 0\n",
|
| 512 |
+
"for i in range(len(json_list)):\n",
|
| 513 |
+
" result = json.loads(json_list[i])\n",
|
| 514 |
+
" \n",
|
| 515 |
+
" if(len(result['annotations'][0]['short_answers'])==0):\n",
|
| 516 |
+
" pass\n",
|
| 517 |
+
" else: \n",
|
| 518 |
+
" # assert that the question text is the same\n",
|
| 519 |
+
" assert result['question_text'] + \"?\" == lines.loc[lines_index, 'question']\n",
|
| 520 |
+
" true_start = result['annotations'][0]['short_answers'][0]['start_byte']\n",
|
| 521 |
+
" true_end = result['annotations'][0]['short_answers'][0]['end_byte']\n",
|
| 522 |
+
" true_answer = bytes.decode(bytes(result['document_html'], encoding='utf-8')[true_start:true_end])\n",
|
| 523 |
+
" \n",
|
| 524 |
+
" processed_answer = lines.loc[lines_index, 'answer']\n",
|
| 525 |
+
" # assert that the answer is the same\n",
|
| 526 |
+
" assert cleanhtml(true_answer) == processed_answer\n",
|
| 527 |
+
" \n",
|
| 528 |
+
" start_ind = int(lines.loc[lines_index, 'answer_start'])\n",
|
| 529 |
+
" # assert that the answer (according to the index) is the same\n",
|
| 530 |
+
" assert cleanhtml(true_answer) == lines.loc[lines_index, 'context'][start_ind:start_ind+len(processed_answer)]\n",
|
| 531 |
+
" \n",
|
| 532 |
+
" lines_index += 1\n",
|
| 533 |
+
" \n",
|
| 534 |
+
" if lines_index == len(lines):\n",
|
| 535 |
+
" break\n",
|
| 536 |
+
"print(\"Passed\")"
|
| 537 |
+
]
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"cell_type": "markdown",
|
| 541 |
+
"id": "78e6e737",
|
| 542 |
+
"metadata": {},
|
| 543 |
+
"source": [
|
| 544 |
+
"## Hotpot QA"
|
| 545 |
+
]
|
| 546 |
+
},
|
| 547 |
+
{
|
| 548 |
+
"cell_type": "code",
|
| 549 |
+
"execution_count": null,
|
| 550 |
+
"id": "27efcc8c",
|
| 551 |
+
"metadata": {},
|
| 552 |
+
"outputs": [],
|
| 553 |
+
"source": [
|
| 554 |
+
"ds = load_dataset(\"hotpot_qa\", 'fullwiki')"
|
| 555 |
+
]
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"cell_type": "code",
|
| 559 |
+
"execution_count": null,
|
| 560 |
+
"id": "1493f21f",
|
| 561 |
+
"metadata": {},
|
| 562 |
+
"outputs": [],
|
| 563 |
+
"source": [
|
| 564 |
+
"ds"
|
| 565 |
+
]
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"cell_type": "code",
|
| 569 |
+
"execution_count": null,
|
| 570 |
+
"id": "2a047946",
|
| 571 |
+
"metadata": {},
|
| 572 |
+
"outputs": [],
|
| 573 |
+
"source": [
|
| 574 |
+
"os.mkdir('data/hotpotqa_training')\n",
|
| 575 |
+
"os.mkdir('data/hotpotqa_test')"
|
| 576 |
+
]
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"cell_type": "code",
|
| 580 |
+
"execution_count": null,
|
| 581 |
+
"id": "e65b6485",
|
| 582 |
+
"metadata": {},
|
| 583 |
+
"outputs": [],
|
| 584 |
+
"source": [
|
| 585 |
+
"# column contains the split (either train or validation), save_dir is the directory\n",
|
| 586 |
+
"def save_samples(column, save_dir):\n",
|
| 587 |
+
" text = []\n",
|
| 588 |
+
" i = 0\n",
|
| 589 |
+
"\n",
|
| 590 |
+
" for sample in tqdm(ds[column]):\n",
|
| 591 |
+
" \n",
|
| 592 |
+
" # preprocess the context and question by removing the newlines\n",
|
| 593 |
+
" context = sample['context']['sentences']\n",
|
| 594 |
+
" context = \" \".join([\"\".join(sentence) for sentence in context])\n",
|
| 595 |
+
" question = sample['question'].replace('\\n','')\n",
|
| 596 |
+
" \n",
|
| 597 |
+
" # get the answer as text and start character index\n",
|
| 598 |
+
" answer_text = sample['answer']\n",
|
| 599 |
+
" answer_start = context.find(answer_text)\n",
|
| 600 |
+
" if answer_start == -1:\n",
|
| 601 |
+
" continue\n",
|
| 602 |
+
" \n",
|
| 603 |
+
" \n",
|
| 604 |
+
" \n",
|
| 605 |
+
" if answer_start > 1500:\n",
|
| 606 |
+
" first = random.randint(answer_start-1500, answer_start)\n",
|
| 607 |
+
" end = first + 1500 + len(answer_text)\n",
|
| 608 |
+
" \n",
|
| 609 |
+
" context = context[first:end+1]\n",
|
| 610 |
+
" answer_start = context.find(answer_text)\n",
|
| 611 |
+
" \n",
|
| 612 |
+
" if answer_start == -1:continue\n",
|
| 613 |
+
" \n",
|
| 614 |
+
" text.append([context, question, answer_text, str(answer_start)])\n",
|
| 615 |
+
"\n",
|
| 616 |
+
" # we choose chunks of 1000\n",
|
| 617 |
+
" if len(text) == 1000:\n",
|
| 618 |
+
" with open(f\"data/{save_dir}/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 619 |
+
" f.write(\"\\n\".join([\"\\t\".join(t) for t in text]))\n",
|
| 620 |
+
" text = []\n",
|
| 621 |
+
" i += 1\n",
|
| 622 |
+
"\n",
|
| 623 |
+
" # save remaining\n",
|
| 624 |
+
" with open(f\"data/{save_dir}/text_{i}.txt\", 'w', encoding='utf-8') as f:\n",
|
| 625 |
+
" f.write(\"\\n\".join([\"\\t\".join(t) for t in text]))\n",
|
| 626 |
+
"\n",
|
| 627 |
+
"save_samples(\"train\", \"hotpotqa_training\")\n",
|
| 628 |
+
"save_samples(\"validation\", \"hotpotqa_test\")"
|
| 629 |
+
]
|
| 630 |
+
},
|
| 631 |
+
{
|
| 632 |
+
"cell_type": "markdown",
|
| 633 |
+
"id": "97cc358f",
|
| 634 |
+
"metadata": {},
|
| 635 |
+
"source": [
|
| 636 |
+
"## Testing"
|
| 637 |
+
]
|
| 638 |
+
},
|
| 639 |
+
{
|
| 640 |
+
"cell_type": "code",
|
| 641 |
+
"execution_count": null,
|
| 642 |
+
"id": "f321483c",
|
| 643 |
+
"metadata": {},
|
| 644 |
+
"outputs": [],
|
| 645 |
+
"source": [
|
| 646 |
+
"with open(\"data/hotpotqa_training/text_0.txt\", 'r', encoding='utf-8') as f:\n",
|
| 647 |
+
" lines = f.read().split('\\n')\n",
|
| 648 |
+
" \n",
|
| 649 |
+
"lines = pd.DataFrame([line.split(\"\\t\") for line in lines], columns=[\"context\", \"question\", \"answer\", \"answer_start\"])"
|
| 650 |
+
]
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"cell_type": "code",
|
| 654 |
+
"execution_count": null,
|
| 655 |
+
"id": "72a96e78",
|
| 656 |
+
"metadata": {},
|
| 657 |
+
"outputs": [],
|
| 658 |
+
"source": [
|
| 659 |
+
"assert lines.shape == (1000, 4)\n",
|
| 660 |
+
"print(\"Passed\")"
|
| 661 |
+
]
|
| 662 |
+
},
|
| 663 |
+
{
|
| 664 |
+
"cell_type": "code",
|
| 665 |
+
"execution_count": null,
|
| 666 |
+
"id": "c32c2f16",
|
| 667 |
+
"metadata": {},
|
| 668 |
+
"outputs": [],
|
| 669 |
+
"source": [
|
| 670 |
+
"# we assert that we have the right interval\n",
|
| 671 |
+
"for ind, line in lines.iterrows():\n",
|
| 672 |
+
" sample = line\n",
|
| 673 |
+
" answer_start = int(sample['answer_start'])\n",
|
| 674 |
+
" assert sample['context'][answer_start:answer_start+len(sample['answer'])] == sample['answer']\n",
|
| 675 |
+
"print(\"Passed\")"
|
| 676 |
+
]
|
| 677 |
+
},
|
| 678 |
+
{
|
| 679 |
+
"cell_type": "code",
|
| 680 |
+
"execution_count": null,
|
| 681 |
+
"id": "bc36fe7d",
|
| 682 |
+
"metadata": {},
|
| 683 |
+
"outputs": [],
|
| 684 |
+
"source": []
|
| 685 |
+
}
|
| 686 |
+
],
|
| 687 |
+
"metadata": {
|
| 688 |
+
"kernelspec": {
|
| 689 |
+
"display_name": "Python 3 (ipykernel)",
|
| 690 |
+
"language": "python",
|
| 691 |
+
"name": "python3"
|
| 692 |
+
},
|
| 693 |
+
"language_info": {
|
| 694 |
+
"codemirror_mode": {
|
| 695 |
+
"name": "ipython",
|
| 696 |
+
"version": 3
|
| 697 |
+
},
|
| 698 |
+
"file_extension": ".py",
|
| 699 |
+
"mimetype": "text/x-python",
|
| 700 |
+
"name": "python",
|
| 701 |
+
"nbconvert_exporter": "python",
|
| 702 |
+
"pygments_lexer": "ipython3",
|
| 703 |
+
"version": "3.10.16"
|
| 704 |
+
},
|
| 705 |
+
"toc": {
|
| 706 |
+
"base_numbering": 1,
|
| 707 |
+
"nav_menu": {},
|
| 708 |
+
"number_sections": true,
|
| 709 |
+
"sideBar": true,
|
| 710 |
+
"skip_h1_title": false,
|
| 711 |
+
"title_cell": "Table of Contents",
|
| 712 |
+
"title_sidebar": "Contents",
|
| 713 |
+
"toc_cell": false,
|
| 714 |
+
"toc_position": {},
|
| 715 |
+
"toc_section_display": true,
|
| 716 |
+
"toc_window_display": false
|
| 717 |
+
},
|
| 718 |
+
"varInspector": {
|
| 719 |
+
"cols": {
|
| 720 |
+
"lenName": 16,
|
| 721 |
+
"lenType": 16,
|
| 722 |
+
"lenVar": 40
|
| 723 |
+
},
|
| 724 |
+
"kernels_config": {
|
| 725 |
+
"python": {
|
| 726 |
+
"delete_cmd_postfix": "",
|
| 727 |
+
"delete_cmd_prefix": "del ",
|
| 728 |
+
"library": "var_list.py",
|
| 729 |
+
"varRefreshCmd": "print(var_dic_list())"
|
| 730 |
+
},
|
| 731 |
+
"r": {
|
| 732 |
+
"delete_cmd_postfix": ") ",
|
| 733 |
+
"delete_cmd_prefix": "rm(",
|
| 734 |
+
"library": "var_list.r",
|
| 735 |
+
"varRefreshCmd": "cat(var_dic_list()) "
|
| 736 |
+
}
|
| 737 |
+
},
|
| 738 |
+
"types_to_exclude": [
|
| 739 |
+
"module",
|
| 740 |
+
"function",
|
| 741 |
+
"builtin_function_or_method",
|
| 742 |
+
"instance",
|
| 743 |
+
"_Feature"
|
| 744 |
+
],
|
| 745 |
+
"window_display": false
|
| 746 |
+
},
|
| 747 |
+
"vscode": {
|
| 748 |
+
"interpreter": {
|
| 749 |
+
"hash": "85bf9c14e9ba73b783ed1274d522bec79eb0b2b739090180d8ce17bb11aff4aa"
|
| 750 |
+
}
|
| 751 |
+
}
|
| 752 |
+
},
|
| 753 |
+
"nbformat": 4,
|
| 754 |
+
"nbformat_minor": 5
|
| 755 |
+
}
|