File size: 14,626 Bytes
cc9dfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
"`fastai.data` loads and manages datasets with `DataBunch`"
from .torch_core import *
from torch.utils.data.dataloader import default_collate

DatasetType = Enum('DatasetType', 'Train Valid Test Single Fix')
__all__ = ['DataBunch', 'DeviceDataLoader', 'DatasetType', 'load_data']

old_dl_init = torch.utils.data.DataLoader.__init__

def intercept_args(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
                 num_workers=0, collate_fn=default_collate, pin_memory=True, drop_last=False,
                 timeout=0, worker_init_fn=None):
    self.init_kwargs = {'batch_size':batch_size, 'shuffle':shuffle, 'sampler':sampler, 'batch_sampler':batch_sampler,
                        'num_workers':num_workers, 'collate_fn':collate_fn, 'pin_memory':pin_memory,
                        'drop_last': drop_last, 'timeout':timeout, 'worker_init_fn':worker_init_fn}
    old_dl_init(self, dataset, **self.init_kwargs)

torch.utils.data.DataLoader.__init__ = intercept_args

def DataLoader___getattr__(dl, k:str)->Any: return getattr(dl.dataset, k)
DataLoader.__getattr__ = DataLoader___getattr__

def DataLoader___setstate__(dl, data:Any): dl.__dict__.update(data)
DataLoader.__setstate__ = DataLoader___setstate__

@dataclass
class DeviceDataLoader():
    "Bind a `DataLoader` to a `torch.device`."
    dl: DataLoader
    device: torch.device
    tfms: List[Callable]=None
    collate_fn: Callable=data_collate
    def __post_init__(self):
        self.dl.collate_fn=self.collate_fn
        self.tfms = listify(self.tfms)

    def __len__(self)->int: return len(self.dl)
    def __getattr__(self,k:str)->Any: return getattr(self.dl, k)
    def __setstate__(self,data:Any): self.__dict__.update(data)

    @property
    def batch_size(self):   return self.dl.batch_size
    @batch_size.setter
    def batch_size(self,v):
        new_kwargs = {**self.dl.init_kwargs, 'batch_size':v, 'collate_fn':self.collate_fn}
        self.dl = self.dl.__class__(self.dl.dataset, **new_kwargs)
        if hasattr(self.dl.dataset, 'bs'): self.dl.dataset.bs = v

    @property
    def num_workers(self):   return self.dl.num_workers
    @num_workers.setter
    def num_workers(self,v): self.dl.num_workers = v

    def add_tfm(self,tfm:Callable)->None:
        "Add `tfm` to `self.tfms`."
        self.tfms.append(tfm)
    def remove_tfm(self,tfm:Callable)->None:
        "Remove `tfm` from `self.tfms`."
        if tfm in self.tfms: self.tfms.remove(tfm)

    def new(self, **kwargs):
        "Create a new copy of `self` with `kwargs` replacing current values."
        new_kwargs = {**self.dl.init_kwargs, **kwargs}
        return DeviceDataLoader(self.dl.__class__(self.dl.dataset, **new_kwargs), self.device, self.tfms,
                                self.collate_fn)

    def proc_batch(self,b:Tensor)->Tensor:
        "Process batch `b` of `TensorImage`."
        b = to_device(b, self.device)
        for f in listify(self.tfms): b = f(b)
        return b

    def __iter__(self):
        "Process and returns items from `DataLoader`."
        for b in self.dl: yield self.proc_batch(b)

    @classmethod
    def create(cls, dataset:Dataset, bs:int=64, shuffle:bool=False, device:torch.device=defaults.device,
               tfms:Collection[Callable]=tfms, num_workers:int=defaults.cpus, collate_fn:Callable=data_collate, **kwargs:Any):
        "Create DeviceDataLoader from `dataset` with `bs` and `shuffle`: process using `num_workers`."
        return cls(DataLoader(dataset, batch_size=bs, shuffle=shuffle, num_workers=num_workers, **kwargs),
                   device=device, tfms=tfms, collate_fn=collate_fn)

class DataBunch():
    "Bind `train_dl`,`valid_dl` and `test_dl` in a data object."

    def __init__(self, train_dl:DataLoader, valid_dl:DataLoader, fix_dl:DataLoader=None, test_dl:Optional[DataLoader]=None,
                 device:torch.device=None, dl_tfms:Optional[Collection[Callable]]=None, path:PathOrStr='.',
                 collate_fn:Callable=data_collate, no_check:bool=False):
        self.dl_tfms = listify(dl_tfms)
        self.device = defaults.device if device is None else device
        assert not isinstance(train_dl,DeviceDataLoader)
        def _create_dl(dl, **kwargs):
            if dl is None: return None
            return DeviceDataLoader(dl, self.device, self.dl_tfms, collate_fn, **kwargs)
        self.train_dl,self.valid_dl,self.fix_dl,self.test_dl = map(_create_dl, [train_dl,valid_dl,fix_dl,test_dl])
        if fix_dl is None: self.fix_dl = self.train_dl.new(shuffle=False, drop_last=False)
        self.single_dl = _create_dl(DataLoader(valid_dl.dataset, batch_size=1, num_workers=0))
        self.path = Path(path)
        if not no_check: self.sanity_check()

    def __repr__(self)->str:
        return f'{self.__class__.__name__};\n\nTrain: {self.train_ds};\n\nValid: {self.valid_ds};\n\nTest: {self.test_ds}'

    @staticmethod
    def _init_ds(train_ds:Dataset, valid_ds:Dataset, test_ds:Optional[Dataset]=None):
        # train_ds, but without training tfms
        fix_ds = valid_ds.new(train_ds.x, train_ds.y) if hasattr(valid_ds,'new') else train_ds
        return [o for o in (train_ds,valid_ds,fix_ds,test_ds) if o is not None]

    @classmethod
    def create(cls, train_ds:Dataset, valid_ds:Dataset, test_ds:Optional[Dataset]=None, path:PathOrStr='.', bs:int=64,
               val_bs:int=None, num_workers:int=defaults.cpus, dl_tfms:Optional[Collection[Callable]]=None,
               device:torch.device=None, collate_fn:Callable=data_collate, no_check:bool=False, **dl_kwargs)->'DataBunch':
        "Create a `DataBunch` from `train_ds`, `valid_ds` and maybe `test_ds` with a batch size of `bs`. Passes `**dl_kwargs` to `DataLoader()`"
        datasets = cls._init_ds(train_ds, valid_ds, test_ds)
        val_bs = ifnone(val_bs, bs)
        dls = [DataLoader(d, b, shuffle=s, drop_last=s, num_workers=num_workers, **dl_kwargs) for d,b,s in
               zip(datasets, (bs,val_bs,val_bs,val_bs), (True,False,False,False)) if d is not None]
        return cls(*dls, path=path, device=device, dl_tfms=dl_tfms, collate_fn=collate_fn, no_check=no_check)

    def __getattr__(self,k:int)->Any: return getattr(self.train_dl, k)
    def __setstate__(self,data:Any): self.__dict__.update(data)

    def dl(self, ds_type:DatasetType=DatasetType.Valid)->DeviceDataLoader:
        "Returns appropriate `Dataset` for validation, training, or test (`ds_type`)."
        #TODO: refactor
        return (self.train_dl if ds_type == DatasetType.Train else
                self.test_dl if ds_type == DatasetType.Test else
                self.valid_dl if ds_type == DatasetType.Valid else
                self.single_dl if ds_type == DatasetType.Single else
                self.fix_dl)

    @property
    def dls(self)->List[DeviceDataLoader]:
        "Returns a list of all DeviceDataLoaders. If you need a specific DeviceDataLoader, access via the relevant property (`train_dl`, `valid_dl`, etc) as the index of DLs in this list is not guaranteed to remain constant."
        res = [self.train_dl, self.fix_dl, self.single_dl]
        # Preserve the original ordering of Train, Valid, Fix, Single, Test Data Loaders
        # (Unknown/not verified as of 1.0.47 whether there are other methods explicitly using DLs their list index)
        if self.valid_dl: res.insert(1, self.valid_dl)
        return res if not self.test_dl else res + [self.test_dl]

    def add_tfm(self,tfm:Callable)->None:
        for dl in self.dls: dl.add_tfm(tfm)

    def remove_tfm(self,tfm:Callable)->None:
        for dl in self.dls: dl.remove_tfm(tfm)

    def save(self, file:PathLikeOrBinaryStream= 'data_save.pkl')->None:
        "Save the `DataBunch` in `self.path/file`. `file` can be file-like (file or buffer)"
        if not getattr(self, 'label_list', False):
            warn("Serializing the `DataBunch` only works when you created it using the data block API.")
            return
        try_save(self.label_list, self.path, file)

    def add_test(self, items:Iterator, label:Any=None, tfms=None, tfm_y=None)->None:
        "Add the `items` as a test set. Pass along `label` otherwise label them with `EmptyLabel`."
        self.label_list.add_test(items, label=label, tfms=tfms, tfm_y=tfm_y)
        vdl = self.valid_dl
        dl = DataLoader(self.label_list.test, vdl.batch_size, shuffle=False, drop_last=False, num_workers=vdl.num_workers)
        self.test_dl = DeviceDataLoader(dl, vdl.device, vdl.tfms, vdl.collate_fn)

    def one_batch(self, ds_type:DatasetType=DatasetType.Train, detach:bool=True, denorm:bool=True, cpu:bool=True)->Collection[Tensor]:
        "Get one batch from the data loader of `ds_type`. Optionally `detach` and `denorm`."
        dl = self.dl(ds_type)
        w = self.num_workers
        self.num_workers = 0
        try:     x,y = next(iter(dl))
        finally: self.num_workers = w
        if detach: x,y = to_detach(x,cpu=cpu),to_detach(y,cpu=cpu)
        norm = getattr(self,'norm',False)
        if denorm and norm:
            x = self.denorm(x)
            if norm.keywords.get('do_y',False): y = self.denorm(y, do_x=True)
        return x,y

    def one_item(self, item, detach:bool=False, denorm:bool=False, cpu:bool=False):
        "Get `item` into a batch. Optionally `detach` and `denorm`."
        ds = self.single_ds
        with ds.set_item(item):
            return self.one_batch(ds_type=DatasetType.Single, detach=detach, denorm=denorm, cpu=cpu)

    def show_batch(self, rows:int=5, ds_type:DatasetType=DatasetType.Train, reverse:bool=False, **kwargs)->None:
        "Show a batch of data in `ds_type` on a few `rows`."
        x,y = self.one_batch(ds_type, True, True)
        if reverse: x,y = x.flip(0),y.flip(0)
        n_items = rows **2 if self.train_ds.x._square_show else rows
        if self.dl(ds_type).batch_size < n_items: n_items = self.dl(ds_type).batch_size
        xs = [self.train_ds.x.reconstruct(grab_idx(x, i)) for i in range(n_items)]
        #TODO: get rid of has_arg if possible
        if has_arg(self.train_ds.y.reconstruct, 'x'):
            ys = [self.train_ds.y.reconstruct(grab_idx(y, i), x=x) for i,x in enumerate(xs)]
        else : ys = [self.train_ds.y.reconstruct(grab_idx(y, i)) for i in range(n_items)]
        self.train_ds.x.show_xys(xs, ys, **kwargs)
 
    def export(self, file:PathLikeOrBinaryStream='export.pkl'):
        "Export the minimal state of `self` for inference in `self.path/file`. `file` can be file-like (file or buffer)"
        xtra = dict(normalize=self.norm.keywords) if getattr(self, 'norm', False) else {}
        try_save(self.valid_ds.get_state(**xtra), self.path, file)

    def _grab_dataset(self, dl:DataLoader):
        ds = dl.dl.dataset
        while hasattr(ds, 'dataset'): ds = ds.dataset
        return ds

    @property
    def train_ds(self)->Dataset: return self._grab_dataset(self.train_dl)
    @property
    def valid_ds(self)->Dataset: return self._grab_dataset(self.valid_dl)
    @property
    def single_ds(self)->Dataset: return self._grab_dataset(self.single_dl)
    @property
    def loss_func(self)->OptLossFunc:
        return getattr(self.train_ds.y, 'loss_func', F.nll_loss) if hasattr(self.train_ds, 'y') else F.nll_loss

    @property
    def test_ds(self)->Dataset:
        return self._grab_dataset(self.test_dl) if self.test_dl is not None else None

    @property
    def empty_val(self)->bool:
        if not hasattr(self, 'valid_dl') or self.valid_dl is None:            return True
        if hasattr(self.valid_ds, 'items') and len(self.valid_ds.items) == 0: return True
        return (len(self.valid_ds) == 0)

    @property
    def is_empty(self)->bool:
        return not ((self.train_dl and len(self.train_ds.items) != 0) or 
                    (self.valid_dl and len(self.valid_ds.items) != 0) or 
                    (self.test_dl  and len(self.test_ds.items)  != 0))
    
    @property
    def batch_size(self):   return self.train_dl.batch_size
    @batch_size.setter
    def batch_size(self,v):
        self.train_dl.batch_size,self.valid_dl.batch_size = v,v
        if self.test_dl is not None: self.test_dl.batch_size = v

    def sanity_check(self):
        "Check the underlying data in the training set can be properly loaded."
        final_message = "You can deactivate this warning by passing `no_check=True`."
        if not hasattr(self.train_ds, 'items') or len(self.train_ds.items) == 0 or not hasattr(self.train_dl, 'batch_sampler'): return
        if len(self.train_dl) == 0:
            warn(f"""Your training dataloader is empty, you have only {len(self.train_dl.dataset)} items in your training set.
                 Your batch size is {self.train_dl.batch_size}, you should lower it.""")
            print(final_message)
            return
        idx = next(iter(self.train_dl.batch_sampler))
        samples,fails = [],[]
        for i in idx:
            try:    samples.append(self.train_dl.dataset[i])
            except: fails.append(i)
        if len(fails) > 0:
            warn_msg = "There seems to be something wrong with your dataset, for example, in the first batch can't access"
            if len(fails) == len(idx):
                warn_msg += f" any element of self.train_ds.\nTried: {show_some(idx)}"
            else:
                warn_msg += f" these elements in self.train_ds: {show_some(fails)}"
            warn(warn_msg)
            print(final_message)
            return
        try: batch = self.collate_fn(samples)
        except:
            message = "It's not possible to collate samples of your dataset together in a batch."
            try:
                shapes = [[o[i].data.shape for o in samples] for i in range(2)]
                message += f'\nShapes of the inputs/targets:\n{shapes}'
            except: pass
            warn(message)
            print(final_message)

def load_data(path:PathOrStr, file:PathLikeOrBinaryStream='data_save.pkl', bs:int=64, val_bs:int=None, num_workers:int=defaults.cpus,
              dl_tfms:Optional[Collection[Callable]]=None, device:torch.device=None, collate_fn:Callable=data_collate,
              no_check:bool=False, **kwargs)->DataBunch:
    "Load a saved `DataBunch` from `path/file`. `file` can be file-like (file or buffer)"
    source = Path(path)/file if is_pathlike(file) else file
    ll = torch.load(source, map_location='cpu') if defaults.device == torch.device('cpu') else torch.load(source)
    return ll.databunch(path=path, bs=bs, val_bs=val_bs, num_workers=num_workers, dl_tfms=dl_tfms, device=device,
                        collate_fn=collate_fn, no_check=no_check, **kwargs)