File size: 11,110 Bytes
cc9dfd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
from .core import *
import hashlib
__all__ = ['URLs', 'Config', 'untar_data', 'download_data', 'datapath4file', 'url2name', 'url2path']
MODEL_URL = 'http://files.fast.ai/models/'
URL = 'http://files.fast.ai/data/examples/'
class URLs():
"Global constants for dataset and model URLs."
LOCAL_PATH = Path.cwd()
S3 = 'https://s3.amazonaws.com/fast-ai-'
S3_IMAGE = f'{S3}imageclas/'
S3_IMAGELOC = f'{S3}imagelocal/'
S3_NLP = f'{S3}nlp/'
S3_COCO = f'{S3}coco/'
S3_MODEL = f'{S3}modelzoo/'
# main datasets
ADULT_SAMPLE = f'{URL}adult_sample'
BIWI_SAMPLE = f'{URL}biwi_sample'
CIFAR = f'{URL}cifar10'
COCO_SAMPLE = f'{S3_COCO}coco_sample'
COCO_TINY = f'{URL}coco_tiny'
HUMAN_NUMBERS = f'{URL}human_numbers'
IMDB = f'{S3_NLP}imdb'
IMDB_SAMPLE = f'{URL}imdb_sample'
ML_SAMPLE = f'{URL}movie_lens_sample'
MNIST_SAMPLE = f'{URL}mnist_sample'
MNIST_TINY = f'{URL}mnist_tiny'
MNIST_VAR_SIZE_TINY = f'{S3_IMAGE}mnist_var_size_tiny'
PLANET_SAMPLE = f'{URL}planet_sample'
PLANET_TINY = f'{URL}planet_tiny'
IMAGENETTE = f'{S3_IMAGE}imagenette'
IMAGENETTE_160 = f'{S3_IMAGE}imagenette-160'
IMAGENETTE_320 = f'{S3_IMAGE}imagenette-320'
IMAGEWOOF = f'{S3_IMAGE}imagewoof'
IMAGEWOOF_160 = f'{S3_IMAGE}imagewoof-160'
IMAGEWOOF_320 = f'{S3_IMAGE}imagewoof-320'
# kaggle competitions download dogs-vs-cats -p {DOGS.absolute()}
DOGS = f'{URL}dogscats'
# image classification datasets
CALTECH_101 = f'{S3_IMAGE}caltech_101'
CARS = f'{S3_IMAGE}stanford-cars'
CIFAR_100 = f'{S3_IMAGE}cifar100'
CUB_200_2011 = f'{S3_IMAGE}CUB_200_2011'
FLOWERS = f'{S3_IMAGE}oxford-102-flowers'
FOOD = f'{S3_IMAGE}food-101'
MNIST = f'{S3_IMAGE}mnist_png'
PETS = f'{S3_IMAGE}oxford-iiit-pet'
# NLP datasets
AG_NEWS = f'{S3_NLP}ag_news_csv'
AMAZON_REVIEWS = f'{S3_NLP}amazon_review_full_csv'
AMAZON_REVIEWS_POLARITY = f'{S3_NLP}amazon_review_polarity_csv'
DBPEDIA = f'{S3_NLP}dbpedia_csv'
MT_ENG_FRA = f'{S3_NLP}giga-fren'
SOGOU_NEWS = f'{S3_NLP}sogou_news_csv'
WIKITEXT = f'{S3_NLP}wikitext-103'
WIKITEXT_TINY = f'{S3_NLP}wikitext-2'
YAHOO_ANSWERS = f'{S3_NLP}yahoo_answers_csv'
YELP_REVIEWS = f'{S3_NLP}yelp_review_full_csv'
YELP_REVIEWS_POLARITY = f'{S3_NLP}yelp_review_polarity_csv'
# Image localization datasets
BIWI_HEAD_POSE = f"{S3_IMAGELOC}biwi_head_pose"
CAMVID = f'{S3_IMAGELOC}camvid'
CAMVID_TINY = f'{URL}camvid_tiny'
LSUN_BEDROOMS = f'{S3_IMAGE}bedroom'
PASCAL_2007 = f'{S3_IMAGELOC}pascal_2007'
PASCAL_2012 = f'{S3_IMAGELOC}pascal_2012'
#Pretrained models
OPENAI_TRANSFORMER = f'{S3_MODEL}transformer'
WT103_FWD = f'{S3_MODEL}wt103-fwd'
WT103_BWD = f'{S3_MODEL}wt103-bwd'
# to create/update a checksum for ./mnist_var_size_tiny.tgz, run:
# python -c 'import fastai.datasets; print(fastai.datasets._check_file("mnist_var_size_tiny.tgz"))'
_checks = {
URLs.ADULT_SAMPLE:(968212, '64eb9d7e23732de0b138f7372d15492f'),
URLs.AG_NEWS:(11784419, 'b86f328f4dbd072486591cb7a5644dcd'),
URLs.AMAZON_REVIEWS_POLARITY:(688339454, '676f7e5208ec343c8274b4bb085bc938'),
URLs.AMAZON_REVIEWS:(643695014, '4a1196cf0adaea22f4bc3f592cddde90'),
URLs.BIWI_HEAD_POSE:(452316199, '00f4ccf66e8cba184bc292fdc08fb237'),
URLs.BIWI_SAMPLE:(593774, '9179f4c1435f4b291f0d5b072d60c2c9'),
URLs.CALTECH_101:(131740031, 'd673425306e98ee4619fcdeef8a0e876'),
URLs.CAMVID:(598913237, '648371e4f3a833682afb39b08a3ce2aa'),
URLs.CAMVID_TINY:(2314212, '2cf6daf91b7a2083ecfa3e9968e9d915'),
URLs.CARS:(1957803273, '9045d6673c9ced0889f41816f6bf2f9f'),
URLs.CIFAR:(168168549, 'a5f8c31371b63a406b23368042812d3c'),
URLs.CIFAR_100:(169168619, 'e5e65dcb54b9d3913f7b8a9ad6607e62'),
URLs.COCO_SAMPLE:(3245877008, '006cd55d633d94b36ecaf661467830ec'),
URLs.COCO_TINY:(801038, '367467451ac4fba79a647753c2c66d3a'),
URLs.CUB_200_2011:(1150585339, 'd2acaa99439dff0483c7bbac1bfe2a92'),
URLs.DBPEDIA:(68341743, '239c7837b9e79db34486f3de6a00e38e'),
URLs.DOGS:(839285364, '3e483c8d6ef2175e9d395a6027eb92b7'),
URLs.FLOWERS:(345236087, '5666e01c1311b4c67fcf20d2b3850a88'),
URLs.FOOD:(5686607260, '1a540ebf1fb40b2bf3f2294234ba7907'),
URLs.HUMAN_NUMBERS:(30252, '8a19c3bfa2bcb08cd787e741261f3ea2'),
URLs.IMDB:(144440600, '90f9b1c4ff43a90d67553c9240dc0249'),
URLs.IMDB_SAMPLE:(571827, '0842e61a9867caa2e6fbdb14fa703d61'),
URLs.LSUN_BEDROOMS:(4579163978, '35d84f38f8a15fe47e66e460c8800d68'),
URLs.ML_SAMPLE:(51790, '10961384dfe7c5181460390a460c1f77'),
URLs.MNIST:(15683414, '03639f83c4e3d19e0a3a53a8a997c487'),
URLs.MNIST_SAMPLE:(3214948, '2dbc7ec6f9259b583af0072c55816a88'),
URLs.MNIST_TINY:(342207, '56143e8f24db90d925d82a5a74141875'),
URLs.MNIST_VAR_SIZE_TINY:(565372, 'b71a930f4eb744a4a143a6c7ff7ed67f'),
URLs.MT_ENG_FRA:(2598183296, '69573f58e2c850b90f2f954077041d8c'),
URLs.OPENAI_TRANSFORMER:(432848315, '024b0d2203ebb0cd1fc64b27cf8af18e'),
URLs.PASCAL_2007:(1636130334, 'a70574e9bc592bd3b253f5bf46ce12e3'),
URLs.PASCAL_2012:(2611715776, '2ae7897038383836f86ce58f66b09e31'),
URLs.PETS:(811706944, 'e4db5c768afd933bb91f5f594d7417a4'),
URLs.PLANET_SAMPLE:(15523994, '8bfb174b3162f07fbde09b54555bdb00'),
URLs.PLANET_TINY:(997569, '490873c5683454d4b2611fb1f00a68a9'),
URLs.SOGOU_NEWS:(384269937, '950f1366d33be52f5b944f8a8b680902'),
URLs.WIKITEXT:(190200704, '2dd8cf8693b3d27e9c8f0a7df054b2c7'),
URLs.WIKITEXT_TINY:(4070055, '2a82d47a7b85c8b6a8e068dc4c1d37e7'),
URLs.WT103_FWD:(105067061, '7d1114cd9684bf9d1ca3c9f6a54da6f9'),
URLs.WT103_BWD:(105205312, '20b06f5830fd5a891d21044c28d3097f'),
URLs.YAHOO_ANSWERS:(319476345, '0632a0d236ef3a529c0fa4429b339f68'),
URLs.YELP_REVIEWS_POLARITY:(166373201, '48c8451c1ad30472334d856b5d294807'),
URLs.YELP_REVIEWS:(196146755, '1efd84215ea3e30d90e4c33764b889db'),
}
#TODO: This can probably be coded more shortly and nicely.
class Config():
"Creates a default config file 'config.yml' in $FASTAI_HOME (default `~/.fastai/`)"
DEFAULT_CONFIG_LOCATION = os.path.expanduser(os.getenv('FASTAI_HOME', '~/.fastai'))
DEFAULT_CONFIG_PATH = DEFAULT_CONFIG_LOCATION + '/config.yml'
DEFAULT_CONFIG = {
'data_path': DEFAULT_CONFIG_LOCATION + '/data',
'data_archive_path': DEFAULT_CONFIG_LOCATION + '/data',
'model_path': DEFAULT_CONFIG_LOCATION + '/models'
}
@classmethod
def get_key(cls, key):
"Get the path to `key` in the config file."
return cls.get().get(key, cls.DEFAULT_CONFIG.get(key,None))
@classmethod
def get_path(cls, path):
"Get the `path` in the config file."
return _expand_path(cls.get_key(path))
@classmethod
def data_path(cls):
"Get the path to data in the config file."
return cls.get_path('data_path')
@classmethod
def data_archive_path(cls):
"Get the path to data archives in the config file."
return cls.get_path('data_archive_path')
@classmethod
def model_path(cls):
"Get the path to fastai pretrained models in the config file."
return cls.get_path('model_path')
@classmethod
def get(cls, fpath=None, create_missing=True):
"Retrieve the `Config` in `fpath`."
fpath = _expand_path(fpath or cls.DEFAULT_CONFIG_PATH)
if not fpath.exists() and create_missing: cls.create(fpath)
assert fpath.exists(), f'Could not find config at: {fpath}. Please create'
with open(fpath, 'r') as yaml_file: return yaml.safe_load(yaml_file)
@classmethod
def create(cls, fpath):
"Creates a `Config` from `fpath`."
fpath = _expand_path(fpath)
assert(fpath.suffix == '.yml')
if fpath.exists(): return
fpath.parent.mkdir(parents=True, exist_ok=True)
with open(fpath, 'w') as yaml_file:
yaml.dump(cls.DEFAULT_CONFIG, yaml_file, default_flow_style=False)
def _expand_path(fpath): return Path(fpath).expanduser()
def url2name(url): return url.split('/')[-1]
#TODO: simplify this mess
def url2path(url, data=True, ext:str='.tgz'):
"Change `url` to a path."
name = url2name(url)
return datapath4file(name, ext=ext, archive=False) if data else modelpath4file(name, ext=ext)
def _url2tgz(url, data=True, ext:str='.tgz'):
return datapath4file(f'{url2name(url)}{ext}', ext=ext) if data else modelpath4file(f'{url2name(url)}{ext}', ext=ext)
def modelpath4file(filename, ext:str='.tgz'):
"Return model path to `filename`, checking locally first then in the config file."
local_path = URLs.LOCAL_PATH/'models'/filename
if local_path.exists() or local_path.with_suffix(ext).exists(): return local_path
else: return Config.model_path()/filename
def datapath4file(filename, ext:str='.tgz', archive=True):
"Return data path to `filename`, checking locally first then in the config file."
local_path = URLs.LOCAL_PATH/'data'/filename
if local_path.exists() or local_path.with_suffix(ext).exists(): return local_path
elif archive: return Config.data_archive_path() / filename
else: return Config.data_path() / filename
def download_data(url:str, fname:PathOrStr=None, data:bool=True, ext:str='.tgz') -> Path:
"Download `url` to destination `fname`."
fname = Path(ifnone(fname, _url2tgz(url, data, ext=ext)))
os.makedirs(fname.parent, exist_ok=True)
if not fname.exists():
print(f'Downloading {url}')
download_url(f'{url}{ext}', fname)
return fname
def _check_file(fname):
size = os.path.getsize(fname)
with open(fname, "rb") as f:
hash_nb = hashlib.md5(f.read(2**20)).hexdigest()
return size,hash_nb
def untar_data(url:str, fname:PathOrStr=None, dest:PathOrStr=None, data=True, force_download=False) -> Path:
"Download `url` to `fname` if `dest` doesn't exist, and un-tgz to folder `dest`."
dest = url2path(url, data) if dest is None else Path(dest)/url2name(url)
fname = Path(ifnone(fname, _url2tgz(url, data)))
if force_download or (fname.exists() and url in _checks and _check_file(fname) != _checks[url]):
print(f"A new version of the {'dataset' if data else 'model'} is available.")
if fname.exists(): os.remove(fname)
if dest.exists(): shutil.rmtree(dest)
if not dest.exists():
fname = download_data(url, fname=fname, data=data)
if url in _checks:
assert _check_file(fname) == _checks[url], f"Downloaded file {fname} does not match checksum expected! Remove that file from {Config().data_archive_path()} and try your code again."
tarfile.open(fname, 'r:gz').extractall(dest.parent)
return dest
|