File size: 11,110 Bytes
cc9dfd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from .core import *
import hashlib

__all__ = ['URLs', 'Config', 'untar_data', 'download_data', 'datapath4file', 'url2name', 'url2path']

MODEL_URL = 'http://files.fast.ai/models/'
URL = 'http://files.fast.ai/data/examples/'
class URLs():
    "Global constants for dataset and model URLs."
    LOCAL_PATH = Path.cwd()
    S3 = 'https://s3.amazonaws.com/fast-ai-'

    S3_IMAGE    = f'{S3}imageclas/'
    S3_IMAGELOC = f'{S3}imagelocal/'
    S3_NLP      = f'{S3}nlp/'
    S3_COCO     = f'{S3}coco/'
    S3_MODEL    = f'{S3}modelzoo/'

    # main datasets
    ADULT_SAMPLE        = f'{URL}adult_sample'
    BIWI_SAMPLE         = f'{URL}biwi_sample'
    CIFAR               = f'{URL}cifar10'
    COCO_SAMPLE         = f'{S3_COCO}coco_sample'
    COCO_TINY           = f'{URL}coco_tiny'
    HUMAN_NUMBERS       = f'{URL}human_numbers'
    IMDB                = f'{S3_NLP}imdb'
    IMDB_SAMPLE         = f'{URL}imdb_sample'
    ML_SAMPLE           = f'{URL}movie_lens_sample'
    MNIST_SAMPLE        = f'{URL}mnist_sample'
    MNIST_TINY          = f'{URL}mnist_tiny'
    MNIST_VAR_SIZE_TINY = f'{S3_IMAGE}mnist_var_size_tiny'
    PLANET_SAMPLE       = f'{URL}planet_sample'
    PLANET_TINY         = f'{URL}planet_tiny'
    IMAGENETTE          = f'{S3_IMAGE}imagenette'
    IMAGENETTE_160      = f'{S3_IMAGE}imagenette-160'
    IMAGENETTE_320      = f'{S3_IMAGE}imagenette-320'
    IMAGEWOOF           = f'{S3_IMAGE}imagewoof'
    IMAGEWOOF_160       = f'{S3_IMAGE}imagewoof-160'
    IMAGEWOOF_320       = f'{S3_IMAGE}imagewoof-320'

    # kaggle competitions download dogs-vs-cats -p {DOGS.absolute()}
    DOGS = f'{URL}dogscats'

    # image classification datasets
    CALTECH_101  = f'{S3_IMAGE}caltech_101'
    CARS         = f'{S3_IMAGE}stanford-cars'
    CIFAR_100    = f'{S3_IMAGE}cifar100'
    CUB_200_2011 = f'{S3_IMAGE}CUB_200_2011'
    FLOWERS      = f'{S3_IMAGE}oxford-102-flowers'
    FOOD         = f'{S3_IMAGE}food-101'
    MNIST        = f'{S3_IMAGE}mnist_png'
    PETS         = f'{S3_IMAGE}oxford-iiit-pet'

    # NLP datasets
    AG_NEWS                 = f'{S3_NLP}ag_news_csv'
    AMAZON_REVIEWS          = f'{S3_NLP}amazon_review_full_csv'
    AMAZON_REVIEWS_POLARITY = f'{S3_NLP}amazon_review_polarity_csv'
    DBPEDIA                 = f'{S3_NLP}dbpedia_csv'
    MT_ENG_FRA              = f'{S3_NLP}giga-fren'
    SOGOU_NEWS              = f'{S3_NLP}sogou_news_csv'
    WIKITEXT                = f'{S3_NLP}wikitext-103'
    WIKITEXT_TINY           = f'{S3_NLP}wikitext-2'
    YAHOO_ANSWERS           = f'{S3_NLP}yahoo_answers_csv'
    YELP_REVIEWS            = f'{S3_NLP}yelp_review_full_csv'
    YELP_REVIEWS_POLARITY   = f'{S3_NLP}yelp_review_polarity_csv'

    # Image localization datasets
    BIWI_HEAD_POSE     = f"{S3_IMAGELOC}biwi_head_pose"
    CAMVID             = f'{S3_IMAGELOC}camvid'
    CAMVID_TINY        = f'{URL}camvid_tiny'
    LSUN_BEDROOMS      = f'{S3_IMAGE}bedroom'
    PASCAL_2007        = f'{S3_IMAGELOC}pascal_2007'
    PASCAL_2012        = f'{S3_IMAGELOC}pascal_2012'

    #Pretrained models
    OPENAI_TRANSFORMER = f'{S3_MODEL}transformer'
    WT103_FWD          = f'{S3_MODEL}wt103-fwd'
    WT103_BWD          = f'{S3_MODEL}wt103-bwd'

# to create/update a checksum for ./mnist_var_size_tiny.tgz, run:
# python -c 'import fastai.datasets; print(fastai.datasets._check_file("mnist_var_size_tiny.tgz"))'
_checks = {
    URLs.ADULT_SAMPLE:(968212, '64eb9d7e23732de0b138f7372d15492f'),
    URLs.AG_NEWS:(11784419, 'b86f328f4dbd072486591cb7a5644dcd'),
    URLs.AMAZON_REVIEWS_POLARITY:(688339454, '676f7e5208ec343c8274b4bb085bc938'),
    URLs.AMAZON_REVIEWS:(643695014, '4a1196cf0adaea22f4bc3f592cddde90'),
    URLs.BIWI_HEAD_POSE:(452316199, '00f4ccf66e8cba184bc292fdc08fb237'),
    URLs.BIWI_SAMPLE:(593774, '9179f4c1435f4b291f0d5b072d60c2c9'),
    URLs.CALTECH_101:(131740031, 'd673425306e98ee4619fcdeef8a0e876'),
    URLs.CAMVID:(598913237, '648371e4f3a833682afb39b08a3ce2aa'),
    URLs.CAMVID_TINY:(2314212, '2cf6daf91b7a2083ecfa3e9968e9d915'),
    URLs.CARS:(1957803273, '9045d6673c9ced0889f41816f6bf2f9f'),
    URLs.CIFAR:(168168549, 'a5f8c31371b63a406b23368042812d3c'),
    URLs.CIFAR_100:(169168619, 'e5e65dcb54b9d3913f7b8a9ad6607e62'),
    URLs.COCO_SAMPLE:(3245877008, '006cd55d633d94b36ecaf661467830ec'),
    URLs.COCO_TINY:(801038, '367467451ac4fba79a647753c2c66d3a'),
    URLs.CUB_200_2011:(1150585339, 'd2acaa99439dff0483c7bbac1bfe2a92'),
    URLs.DBPEDIA:(68341743, '239c7837b9e79db34486f3de6a00e38e'),
    URLs.DOGS:(839285364, '3e483c8d6ef2175e9d395a6027eb92b7'),
    URLs.FLOWERS:(345236087, '5666e01c1311b4c67fcf20d2b3850a88'),
    URLs.FOOD:(5686607260, '1a540ebf1fb40b2bf3f2294234ba7907'),
    URLs.HUMAN_NUMBERS:(30252, '8a19c3bfa2bcb08cd787e741261f3ea2'),
    URLs.IMDB:(144440600, '90f9b1c4ff43a90d67553c9240dc0249'),
    URLs.IMDB_SAMPLE:(571827, '0842e61a9867caa2e6fbdb14fa703d61'),
    URLs.LSUN_BEDROOMS:(4579163978, '35d84f38f8a15fe47e66e460c8800d68'),
    URLs.ML_SAMPLE:(51790, '10961384dfe7c5181460390a460c1f77'),
    URLs.MNIST:(15683414, '03639f83c4e3d19e0a3a53a8a997c487'),
    URLs.MNIST_SAMPLE:(3214948, '2dbc7ec6f9259b583af0072c55816a88'),
    URLs.MNIST_TINY:(342207, '56143e8f24db90d925d82a5a74141875'),
    URLs.MNIST_VAR_SIZE_TINY:(565372, 'b71a930f4eb744a4a143a6c7ff7ed67f'),
    URLs.MT_ENG_FRA:(2598183296, '69573f58e2c850b90f2f954077041d8c'),
    URLs.OPENAI_TRANSFORMER:(432848315, '024b0d2203ebb0cd1fc64b27cf8af18e'),
    URLs.PASCAL_2007:(1636130334, 'a70574e9bc592bd3b253f5bf46ce12e3'),
    URLs.PASCAL_2012:(2611715776, '2ae7897038383836f86ce58f66b09e31'),
    URLs.PETS:(811706944, 'e4db5c768afd933bb91f5f594d7417a4'),
    URLs.PLANET_SAMPLE:(15523994, '8bfb174b3162f07fbde09b54555bdb00'),
    URLs.PLANET_TINY:(997569, '490873c5683454d4b2611fb1f00a68a9'),
    URLs.SOGOU_NEWS:(384269937, '950f1366d33be52f5b944f8a8b680902'),
    URLs.WIKITEXT:(190200704, '2dd8cf8693b3d27e9c8f0a7df054b2c7'),
    URLs.WIKITEXT_TINY:(4070055, '2a82d47a7b85c8b6a8e068dc4c1d37e7'),
    URLs.WT103_FWD:(105067061, '7d1114cd9684bf9d1ca3c9f6a54da6f9'),
    URLs.WT103_BWD:(105205312, '20b06f5830fd5a891d21044c28d3097f'),
    URLs.YAHOO_ANSWERS:(319476345, '0632a0d236ef3a529c0fa4429b339f68'),
    URLs.YELP_REVIEWS_POLARITY:(166373201, '48c8451c1ad30472334d856b5d294807'),
    URLs.YELP_REVIEWS:(196146755, '1efd84215ea3e30d90e4c33764b889db'),
}

#TODO: This can probably be coded more shortly and nicely.
class Config():
    "Creates a default config file 'config.yml' in $FASTAI_HOME (default `~/.fastai/`)"
    DEFAULT_CONFIG_LOCATION = os.path.expanduser(os.getenv('FASTAI_HOME', '~/.fastai'))
    DEFAULT_CONFIG_PATH = DEFAULT_CONFIG_LOCATION + '/config.yml'
    DEFAULT_CONFIG = {
        'data_path': DEFAULT_CONFIG_LOCATION + '/data',
        'data_archive_path': DEFAULT_CONFIG_LOCATION + '/data',
        'model_path': DEFAULT_CONFIG_LOCATION + '/models'
    }

    @classmethod
    def get_key(cls, key):
        "Get the path to `key` in the config file."
        return cls.get().get(key, cls.DEFAULT_CONFIG.get(key,None))

    @classmethod
    def get_path(cls, path):
        "Get the `path` in the config file."
        return _expand_path(cls.get_key(path))

    @classmethod
    def data_path(cls):
        "Get the path to data in the config file."
        return cls.get_path('data_path')

    @classmethod
    def data_archive_path(cls):
        "Get the path to data archives in the config file."
        return cls.get_path('data_archive_path')

    @classmethod
    def model_path(cls):
        "Get the path to fastai pretrained models in the config file."
        return cls.get_path('model_path')

    @classmethod
    def get(cls, fpath=None, create_missing=True):
        "Retrieve the `Config` in `fpath`."
        fpath = _expand_path(fpath or cls.DEFAULT_CONFIG_PATH)
        if not fpath.exists() and create_missing: cls.create(fpath)
        assert fpath.exists(), f'Could not find config at: {fpath}. Please create'
        with open(fpath, 'r') as yaml_file: return yaml.safe_load(yaml_file)

    @classmethod
    def create(cls, fpath):
        "Creates a `Config` from `fpath`."
        fpath = _expand_path(fpath)
        assert(fpath.suffix == '.yml')
        if fpath.exists(): return
        fpath.parent.mkdir(parents=True, exist_ok=True)
        with open(fpath, 'w') as yaml_file:
            yaml.dump(cls.DEFAULT_CONFIG, yaml_file, default_flow_style=False)

def _expand_path(fpath): return Path(fpath).expanduser()
def url2name(url): return url.split('/')[-1]

#TODO: simplify this mess
def url2path(url, data=True, ext:str='.tgz'):
    "Change `url` to a path."
    name = url2name(url)
    return datapath4file(name, ext=ext, archive=False) if data else modelpath4file(name, ext=ext)
def _url2tgz(url, data=True, ext:str='.tgz'):
    return datapath4file(f'{url2name(url)}{ext}', ext=ext) if data else modelpath4file(f'{url2name(url)}{ext}', ext=ext)

def modelpath4file(filename, ext:str='.tgz'):
    "Return model path to `filename`, checking locally first then in the config file."
    local_path = URLs.LOCAL_PATH/'models'/filename
    if local_path.exists() or local_path.with_suffix(ext).exists(): return local_path
    else: return Config.model_path()/filename

def datapath4file(filename, ext:str='.tgz', archive=True):
    "Return data path to `filename`, checking locally first then in the config file."
    local_path = URLs.LOCAL_PATH/'data'/filename
    if local_path.exists() or local_path.with_suffix(ext).exists(): return local_path
    elif archive: return Config.data_archive_path() / filename
    else: return Config.data_path() / filename

def download_data(url:str, fname:PathOrStr=None, data:bool=True, ext:str='.tgz') -> Path:
    "Download `url` to destination `fname`."
    fname = Path(ifnone(fname, _url2tgz(url, data, ext=ext)))
    os.makedirs(fname.parent, exist_ok=True)
    if not fname.exists():
        print(f'Downloading {url}')
        download_url(f'{url}{ext}', fname)
    return fname

def _check_file(fname):
    size = os.path.getsize(fname)
    with open(fname, "rb") as f:
        hash_nb = hashlib.md5(f.read(2**20)).hexdigest()
    return size,hash_nb

def untar_data(url:str, fname:PathOrStr=None, dest:PathOrStr=None, data=True, force_download=False) -> Path:
    "Download `url` to `fname` if `dest` doesn't exist, and un-tgz to folder `dest`."
    dest = url2path(url, data) if dest is None else Path(dest)/url2name(url)
    fname = Path(ifnone(fname, _url2tgz(url, data)))
    if force_download or (fname.exists() and url in _checks and _check_file(fname) != _checks[url]):
        print(f"A new version of the {'dataset' if data else 'model'} is available.")
        if fname.exists(): os.remove(fname)
        if dest.exists(): shutil.rmtree(dest)
    if not dest.exists():
        fname = download_data(url, fname=fname, data=data)
        if url in _checks:
            assert _check_file(fname) == _checks[url], f"Downloaded file {fname} does not match checksum expected! Remove that file from {Config().data_archive_path()} and try your code again."
        tarfile.open(fname, 'r:gz').extractall(dest.parent)
    return dest