File size: 5,232 Bytes
cc9dfd7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
from .torch_core import *
from .basic_train import Learner,LearnerCallback
from torch.nn.parallel import DistributedDataParallel, DataParallel
from torch.utils.data.distributed import DistributedSampler
from fastai.text import TextLMDataBunch
__all__ = ['DistributedRecorder', 'DistributedTrainer', 'read_metrics', 'setup_distrib']
def rnn_reset(self):
if hasattr(self.module, 'reset'): self.module.reset()
DistributedDataParallel.reset = rnn_reset
class ParallelTrainer(LearnerCallback):
_order = -20
def on_train_begin(self, **kwargs): self.learn.model = DataParallel(self.learn.model)
def on_train_end (self, **kwargs): self.learn.model = self.learn.model.module
class DistributedTrainer(LearnerCallback):
_order = -20 # Needs to run before the recorder
def __init__(self, learn:Learner, cuda_id:int=0):
super().__init__(learn)
self.cuda_id,self.train_sampler = cuda_id,None
def _change_dl(self, dl, shuffle):
old_dl = dl
sampler = OurDistributedSampler(dl.dataset, shuffle=shuffle)
new_dl = dl.new(shuffle=False, sampler=sampler)
return old_dl,new_dl,sampler
def on_train_begin(self, **kwargs):
self.learn.model = DistributedDataParallel(self.model, device_ids=[self.cuda_id], output_device=self.cuda_id)
shuffle = self.data.train_dl.init_kwargs['shuffle'] if hasattr(self.data.train_dl, 'init_kwargs') else True
self.old_train_dl,self.data.train_dl,self.train_sampler = self._change_dl(self.data.train_dl, shuffle)
if hasattr(self.data, 'valid_dl') and self.data.valid_dl is not None:
self.old_valid_dl,self.data.valid_dl,self.valid_sampler = self._change_dl(self.data.valid_dl, shuffle)
self.rank = rank_distrib()
self.recorder.silent = (self.rank != 0)
def on_epoch_begin(self, epoch, **kwargs): self.train_sampler.set_epoch(epoch)
def on_train_end(self, **kwargs):
self.learn.model = self.learn.model.module
self.learn.data.train_dl = self.old_train_dl
if hasattr(self.learn.data, 'valid_dl') and self.learn.data.valid_dl is not None:
self.learn.data.valid_dl = self.old_valid_dl
class DistributedRecorder(LearnerCallback):
def __init__(self, learn:Learner, cuda_id:int=0, cache_dir:PathOrStr='tmp'):
super().__init__(learn)
self.cuda_id,self.cache_dir = cuda_id,cache_dir
def on_train_begin(self, **kwargs):
os.makedirs(self.learn.path/self.cache_dir, exist_ok=True)
def on_epoch_end(self, **kwargs): self.save_stats()
def on_train_end(self, **kwargs): self.save_stats()
def save_stats(self):
cache_path,recorder = self.learn.path/self.cache_dir,self.learn.recorder
np.save(cache_path/f'losses_{self.cuda_id}', np.array(recorder.losses))
stats = np.array([[v] + m for v,m in zip(recorder.val_losses,recorder.metrics)])
np.save(cache_path/f'metrics_{self.cuda_id}', stats)
def _learner_parallel(learn:Learner):
"Use nn.DataParallel when training and remove when done"
if not torch.cuda.is_available(): warnings.warn('CUDA is not available, check your drivers - training will continue on CPU', ResourceWarning)
learn.callbacks.append(ParallelTrainer(learn))
return learn
def _learner_distributed(learn:Learner, cuda_id:int, cache_dir:PathOrStr='tmp'):
"Put `learn` on distributed training with `cuda_id`."
learn.callbacks.append(DistributedTrainer(learn, cuda_id))
learn.callbacks.append(DistributedRecorder(learn, cuda_id, cache_dir))
return learn
Learner.to_distributed = _learner_distributed
Learner.to_parallel = _learner_parallel
def read_metrics(cache_path:PathOrStr, n_gpus:int, reduce:bool=True):
losses,metrics = [],[]
for i in range(n_gpus):
losses.append(np.load(cache_path/f'losses_{i}.npy')[None])
metrics.append(np.load(cache_path/f'metrics_{i}.npy')[None])
if reduce:
losses,metrics = np.concatenate(losses,0),np.concatenate(metrics,0)
return losses.mean(0),metrics.mean(0)
return losses,metrics
def setup_distrib(gpu:Any=None):
if gpu is None: return gpu
gpu = int(gpu)
torch.cuda.set_device(int(gpu))
if num_distrib() > 1:
torch.distributed.init_process_group(backend='nccl', init_method='env://')
return gpu
class OurDistributedSampler(DistributedSampler):
"A sampler for language models with the option to not shuffle."
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
super().__init__(dataset, num_replicas=num_replicas, rank=rank)
self.shuffle = shuffle
def __iter__(self):
if self.shuffle:
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else: indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
indices += indices[:(self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
indices = indices[self.rank:self.total_size:self.num_replicas]
assert len(indices) == self.num_samples
return iter(indices)
|