sayed99's picture
project upload
cc9dfd7
# Contribution from @fredguth, https://github.com/fredguth/fastai_playground.
from fastai.torch_core import *
from fastai.callback import *
from fastai.basic_train import *
__all__ = ['TerminateOnNaNCallback', 'EarlyStoppingCallback', 'SaveModelCallback', 'TrackerCallback',
'ReduceLROnPlateauCallback', 'TrackEpochCallback' ]
class TerminateOnNaNCallback(Callback):
"A `Callback` that terminates training if loss is NaN."
def __init__(self):
self.stop = False
def on_batch_end(self, last_loss, epoch, num_batch, **kwargs:Any)->None:
"Test if `last_loss` is NaN and interrupts training."
if self.stop: return True #to skip validation after stopping during training
if torch.isnan(last_loss):
print (f'Epoch/Batch ({epoch}/{num_batch}): Invalid loss, terminating training.')
return {'stop_epoch': True, 'stop_training': True, 'skip_validate': True}
class TrackerCallback(LearnerCallback):
"A `LearnerCallback` that keeps track of the best value in `monitor`."
def __init__(self, learn:Learner, monitor:str='valid_loss', mode:str='auto'):
super().__init__(learn)
self.monitor,self.mode = monitor,mode
if self.mode not in ['auto', 'min', 'max']:
warn(f'{self.__class__} mode {self.mode} is invalid, falling back to "auto" mode.')
self.mode = 'auto'
mode_dict = {'min': np.less, 'max':np.greater}
mode_dict['auto'] = np.less if 'loss' in self.monitor else np.greater
self.operator = mode_dict[self.mode]
def on_train_begin(self, **kwargs:Any)->None:
"Initializes the best value."
self.best = float('inf') if self.operator == np.less else -float('inf')
def get_monitor_value(self):
"Pick the monitored value."
if self.monitor=='trn_loss' and len(self.learn.recorder.losses) == 0: return None
elif len(self.learn.recorder.val_losses) == 0: return None
values = {'train_loss':self.learn.recorder.losses[-1].cpu().numpy(),
'valid_loss':self.learn.recorder.val_losses[-1]}
if values['valid_loss'] is None: return
if self.learn.recorder.metrics:
for m, n in zip(self.learn.recorder.metrics[-1],self.learn.recorder.names[3:-1]):
values[n] = m
if values.get(self.monitor) is None:
warn(f'{self.__class__} conditioned on metric `{self.monitor}` which is not available. Available metrics are: {", ".join(map(str, self.learn.recorder.names[1:-1]))}')
return values.get(self.monitor)
class EarlyStoppingCallback(TrackerCallback):
"A `TrackerCallback` that terminates training when monitored quantity stops improving."
def __init__(self, learn:Learner, monitor:str='valid_loss', mode:str='auto', min_delta:int=0, patience:int=0):
super().__init__(learn, monitor=monitor, mode=mode)
self.min_delta,self.patience = min_delta,patience
if self.operator == np.less: self.min_delta *= -1
def on_train_begin(self, **kwargs:Any)->None:
"Initialize inner arguments."
self.wait = 0
super().on_train_begin(**kwargs)
def on_epoch_end(self, epoch, **kwargs:Any)->None:
"Compare the value monitored to its best score and maybe stop training."
current = self.get_monitor_value()
if current is None: return
if self.operator(current - self.min_delta, self.best):
self.best,self.wait = current,0
else:
self.wait += 1
if self.wait > self.patience:
print(f'Epoch {epoch}: early stopping')
return {"stop_training":True}
class SaveModelCallback(TrackerCallback):
"A `TrackerCallback` that saves the model when monitored quantity is best."
def __init__(self, learn:Learner, monitor:str='valid_loss', mode:str='auto', every:str='improvement', name:str='bestmodel'):
super().__init__(learn, monitor=monitor, mode=mode)
self.every,self.name = every,name
if self.every not in ['improvement', 'epoch']:
warn(f'SaveModel every {self.every} is invalid, falling back to "improvement".')
self.every = 'improvement'
def jump_to_epoch(self, epoch:int)->None:
try:
self.learn.load(f'{self.name}_{epoch-1}', purge=False)
print(f"Loaded {self.name}_{epoch-1}")
except: print(f'Model {self.name}_{epoch-1} not found.')
def on_epoch_end(self, epoch:int, **kwargs:Any)->None:
"Compare the value monitored to its best score and maybe save the model."
if self.every=="epoch": self.learn.save(f'{self.name}_{epoch}')
else: #every="improvement"
current = self.get_monitor_value()
if current is not None and self.operator(current, self.best):
print(f'Better model found at epoch {epoch} with {self.monitor} value: {current}.')
self.best = current
self.learn.save(f'{self.name}')
def on_train_end(self, **kwargs):
"Load the best model."
if self.every=="improvement" and (self.learn.path/f'{self.learn.model_dir}/{self.name}.pth').is_file():
self.learn.load(f'{self.name}', purge=False)
class ReduceLROnPlateauCallback(TrackerCallback):
"A `TrackerCallback` that reduces learning rate when a metric has stopped improving."
def __init__(self, learn:Learner, monitor:str='valid_loss', mode:str='auto', patience:int=0, factor:float=0.2,
min_delta:int=0):
super().__init__(learn, monitor=monitor, mode=mode)
self.patience,self.factor,self.min_delta = patience,factor,min_delta
if self.operator == np.less: self.min_delta *= -1
def on_train_begin(self, **kwargs:Any)->None:
"Initialize inner arguments."
self.wait, self.opt = 0, self.learn.opt
super().on_train_begin(**kwargs)
def on_epoch_end(self, epoch, **kwargs:Any)->None:
"Compare the value monitored to its best and maybe reduce lr."
current = self.get_monitor_value()
if current is None: return
if self.operator(current - self.min_delta, self.best): self.best,self.wait = current,0
else:
self.wait += 1
if self.wait > self.patience:
self.opt.lr *= self.factor
self.wait = 0
print(f'Epoch {epoch}: reducing lr to {self.opt.lr}')
class TrackEpochCallback(LearnerCallback):
_order = -20 #Need to run before fit_one_cycle
def __init__(self, learn:Learner, name:str='epoch', epoch_offset:int=None):
"Store completed epoch number in `learn.model_dir/name`."
super().__init__(learn)
learn._test_writeable_path()
self.path = learn.path/learn.model_dir/name
if epoch_offset is None:
if os.path.isfile(self.path):
with self.path.open('r') as f:
try: self.start_epoch = int(f.read())+1
except: self.start_epoch = 0
else: self.start_epoch = 0
def on_train_begin(self, **kwargs:Any):
return {'epoch': self.start_epoch}
def on_epoch_end(self, epoch, **kwargs:Any)->None:
with self.path.open('w') as f: f.write(f'{epoch}')
def restart(self): os.remove(self.path)