|
"Data loading pipeline for structured data support. Loads from pandas DataFrame" |
|
from ..torch_core import * |
|
from .transform import * |
|
from ..basic_data import * |
|
from ..data_block import * |
|
from ..basic_train import * |
|
from .models import * |
|
from pandas.api.types import is_numeric_dtype, is_categorical_dtype |
|
|
|
__all__ = ['TabularDataBunch', 'TabularLine', 'TabularList', 'TabularProcessor', 'tabular_learner'] |
|
|
|
OptTabTfms = Optional[Collection[TabularProc]] |
|
|
|
|
|
def emb_sz_rule(n_cat:int)->int: return min(600, round(1.6 * n_cat**0.56)) |
|
|
|
def def_emb_sz(classes, n, sz_dict=None): |
|
"Pick an embedding size for `n` depending on `classes` if not given in `sz_dict`." |
|
sz_dict = ifnone(sz_dict, {}) |
|
n_cat = len(classes[n]) |
|
sz = sz_dict.get(n, int(emb_sz_rule(n_cat))) |
|
return n_cat,sz |
|
|
|
class TabularLine(ItemBase): |
|
"Basic item for tabular data." |
|
def __init__(self, cats, conts, classes, names): |
|
self.cats,self.conts,self.classes,self.names = cats,conts,classes,names |
|
self.data = [tensor(cats), tensor(conts)] |
|
|
|
def __str__(self): |
|
res = '' |
|
for c, n in zip(self.cats, self.names[:len(self.cats)]): |
|
res += f"{n} {(self.classes[n][c])}; " |
|
for c,n in zip(self.conts, self.names[len(self.cats):]): |
|
res += f'{n} {c:.4f}; ' |
|
return res |
|
|
|
class TabularProcessor(PreProcessor): |
|
"Regroup the `procs` in one `PreProcessor`." |
|
def __init__(self, ds:ItemBase=None, procs=None): |
|
procs = ifnone(procs, ds.procs if ds is not None else None) |
|
self.procs = listify(procs) |
|
|
|
def process_one(self, item): |
|
df = pd.DataFrame([item,item]) |
|
for proc in self.procs: proc(df, test=True) |
|
if len(self.cat_names) != 0: |
|
codes = np.stack([c.cat.codes.values for n,c in df[self.cat_names].items()], 1).astype(np.int64) + 1 |
|
else: codes = [[]] |
|
if len(self.cont_names) != 0: |
|
conts = np.stack([c.astype('float32').values for n,c in df[self.cont_names].items()], 1) |
|
else: conts = [[]] |
|
classes = None |
|
col_names = list(df[self.cat_names].columns.values) + list(df[self.cont_names].columns.values) |
|
return TabularLine(codes[0], conts[0], classes, col_names) |
|
|
|
def process(self, ds): |
|
if ds.inner_df is None: |
|
ds.classes,ds.cat_names,ds.cont_names = self.classes,self.cat_names,self.cont_names |
|
ds.col_names = self.cat_names + self.cont_names |
|
ds.preprocessed = True |
|
return |
|
for i,proc in enumerate(self.procs): |
|
if isinstance(proc, TabularProc): proc(ds.inner_df, test=True) |
|
else: |
|
|
|
proc = proc(ds.cat_names, ds.cont_names) |
|
proc(ds.inner_df) |
|
ds.cat_names,ds.cont_names = proc.cat_names,proc.cont_names |
|
self.procs[i] = proc |
|
self.cat_names,self.cont_names = ds.cat_names,ds.cont_names |
|
if len(ds.cat_names) != 0: |
|
ds.codes = np.stack([c.cat.codes.values for n,c in ds.inner_df[ds.cat_names].items()], 1).astype(np.int64) + 1 |
|
self.classes = ds.classes = OrderedDict({n:np.concatenate([['#na#'],c.cat.categories.values]) |
|
for n,c in ds.inner_df[ds.cat_names].items()}) |
|
cat_cols = list(ds.inner_df[ds.cat_names].columns.values) |
|
else: ds.codes,ds.classes,self.classes,cat_cols = None,None,None,[] |
|
if len(ds.cont_names) != 0: |
|
ds.conts = np.stack([c.astype('float32').values for n,c in ds.inner_df[ds.cont_names].items()], 1) |
|
cont_cols = list(ds.inner_df[ds.cont_names].columns.values) |
|
else: ds.conts,cont_cols = None,[] |
|
ds.col_names = cat_cols + cont_cols |
|
ds.preprocessed = True |
|
|
|
class TabularDataBunch(DataBunch): |
|
"Create a `DataBunch` suitable for tabular data." |
|
@classmethod |
|
def from_df(cls, path, df:DataFrame, dep_var:str, valid_idx:Collection[int], procs:OptTabTfms=None, |
|
cat_names:OptStrList=None, cont_names:OptStrList=None, classes:Collection=None, |
|
test_df=None, bs:int=64, val_bs:int=None, num_workers:int=defaults.cpus, dl_tfms:Optional[Collection[Callable]]=None, |
|
device:torch.device=None, collate_fn:Callable=data_collate, no_check:bool=False)->DataBunch: |
|
"Create a `DataBunch` from `df` and `valid_idx` with `dep_var`. `kwargs` are passed to `DataBunch.create`." |
|
cat_names = ifnone(cat_names, []).copy() |
|
cont_names = ifnone(cont_names, list(set(df)-set(cat_names)-{dep_var})) |
|
procs = listify(procs) |
|
src = (TabularList.from_df(df, path=path, cat_names=cat_names, cont_names=cont_names, procs=procs) |
|
.split_by_idx(valid_idx)) |
|
src = src.label_from_df(cols=dep_var) if classes is None else src.label_from_df(cols=dep_var, classes=classes) |
|
if test_df is not None: src.add_test(TabularList.from_df(test_df, cat_names=cat_names, cont_names=cont_names, |
|
processor = src.train.x.processor)) |
|
return src.databunch(path=path, bs=bs, val_bs=val_bs, num_workers=num_workers, device=device, |
|
collate_fn=collate_fn, no_check=no_check) |
|
|
|
class TabularList(ItemList): |
|
"Basic `ItemList` for tabular data." |
|
_item_cls=TabularLine |
|
_processor=TabularProcessor |
|
_bunch=TabularDataBunch |
|
def __init__(self, items:Iterator, cat_names:OptStrList=None, cont_names:OptStrList=None, |
|
procs=None, **kwargs)->'TabularList': |
|
super().__init__(range_of(items), **kwargs) |
|
|
|
if cat_names is None: cat_names = [] |
|
if cont_names is None: cont_names = [] |
|
self.cat_names,self.cont_names,self.procs = cat_names,cont_names,procs |
|
self.copy_new += ['cat_names', 'cont_names', 'procs'] |
|
self.preprocessed = False |
|
|
|
@classmethod |
|
def from_df(cls, df:DataFrame, cat_names:OptStrList=None, cont_names:OptStrList=None, procs=None, **kwargs)->'ItemList': |
|
"Get the list of inputs in the `col` of `path/csv_name`." |
|
return cls(items=range(len(df)), cat_names=cat_names, cont_names=cont_names, procs=procs, inner_df=df.copy(), **kwargs) |
|
|
|
def get(self, o): |
|
if not self.preprocessed: return self.inner_df.iloc[o] if hasattr(self, 'inner_df') else self.items[o] |
|
codes = [] if self.codes is None else self.codes[o] |
|
conts = [] if self.conts is None else self.conts[o] |
|
return self._item_cls(codes, conts, self.classes, self.col_names) |
|
|
|
def get_emb_szs(self, sz_dict=None): |
|
"Return the default embedding sizes suitable for this data or takes the ones in `sz_dict`." |
|
return [def_emb_sz(self.classes, n, sz_dict) for n in self.cat_names] |
|
|
|
def reconstruct(self, t:Tensor): |
|
return self._item_cls(t[0], t[1], self.classes, self.col_names) |
|
|
|
def show_xys(self, xs, ys)->None: |
|
"Show the `xs` (inputs) and `ys` (targets)." |
|
from IPython.display import display, HTML |
|
items,names = [], xs[0].names + ['target'] |
|
for i, (x,y) in enumerate(zip(xs,ys)): |
|
res = [] |
|
cats = x.cats if len(x.cats.size()) > 0 else [] |
|
conts = x.conts if len(x.conts.size()) > 0 else [] |
|
for c, n in zip(cats, x.names[:len(cats)]): |
|
res.append(x.classes[n][c]) |
|
res += [f'{c:.4f}' for c in conts] + [y] |
|
items.append(res) |
|
items = np.array(items) |
|
df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) |
|
with pd.option_context('display.max_colwidth', -1): |
|
display(HTML(df.to_html(index=False))) |
|
|
|
def show_xyzs(self, xs, ys, zs): |
|
"Show `xs` (inputs), `ys` (targets) and `zs` (predictions)." |
|
from IPython.display import display, HTML |
|
items,names = [], xs[0].names + ['target', 'prediction'] |
|
for i, (x,y,z) in enumerate(zip(xs,ys,zs)): |
|
res = [] |
|
cats = x.cats if len(x.cats.size()) > 0 else [] |
|
conts = x.conts if len(x.conts.size()) > 0 else [] |
|
for c, n in zip(cats, x.names[:len(cats)]): |
|
res.append(str(x.classes[n][c])) |
|
res += [f'{c:.4f}' for c in conts] + [y, z] |
|
items.append(res) |
|
items = np.array(items) |
|
df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) |
|
with pd.option_context('display.max_colwidth', -1): |
|
display(HTML(df.to_html(index=False))) |
|
|
|
def tabular_learner(data:DataBunch, layers:Collection[int], emb_szs:Dict[str,int]=None, metrics=None, |
|
ps:Collection[float]=None, emb_drop:float=0., y_range:OptRange=None, use_bn:bool=True, **learn_kwargs): |
|
"Get a `Learner` using `data`, with `metrics`, including a `TabularModel` created using the remaining params." |
|
emb_szs = data.get_emb_szs(ifnone(emb_szs, {})) |
|
model = TabularModel(emb_szs, len(data.cont_names), out_sz=data.c, layers=layers, ps=ps, emb_drop=emb_drop, |
|
y_range=y_range, use_bn=use_bn) |
|
return Learner(data, model, metrics=metrics, **learn_kwargs) |
|
|
|
|