sayed99's picture
project upload
cc9dfd7
"Cleaning and feature engineering functions for structured data"
from ..torch_core import *
from pandas.api.types import is_numeric_dtype
from datetime import date, datetime
import calendar
__all__ = ['add_datepart', 'cont_cat_split', 'Categorify', 'FillMissing', 'FillStrategy', 'Normalize', 'TabularProc',
'add_elapsed_times', 'make_date', 'add_cyclic_datepart']
def make_date(df:DataFrame, date_field:str):
"Make sure `df[field_name]` is of the right date type."
field_dtype = df[date_field].dtype
if isinstance(field_dtype, pd.core.dtypes.dtypes.DatetimeTZDtype):
field_dtype = np.datetime64
if not np.issubdtype(field_dtype, np.datetime64):
df[date_field] = pd.to_datetime(df[date_field], infer_datetime_format=True)
def cyclic_dt_feat_names(time:bool=True, add_linear:bool=False)->List[str]:
"Return feature names of date/time cycles as produced by `cyclic_dt_features`."
fs = ['cos','sin']
attr = [f'{r}_{f}' for r in 'weekday day_month month_year day_year'.split() for f in fs]
if time: attr += [f'{r}_{f}' for r in 'hour clock min sec'.split() for f in fs]
if add_linear: attr.append('year_lin')
return attr
def cyclic_dt_features(d:Union[date,datetime], time:bool=True, add_linear:bool=False)->List[float]:
"Calculate the cos and sin of date/time cycles."
tt,fs = d.timetuple(), [np.cos, np.sin]
day_year,days_month = tt.tm_yday, calendar.monthrange(d.year, d.month)[1]
days_year = 366 if calendar.isleap(d.year) else 365
rs = d.weekday()/7, (d.day-1)/days_month, (d.month-1)/12, (day_year-1)/days_year
feats = [f(r * 2 * np.pi) for r in rs for f in fs]
if time and isinstance(d, datetime) and type(d) != date:
rs = tt.tm_hour/24, tt.tm_hour%12/12, tt.tm_min/60, tt.tm_sec/60
feats += [f(r * 2 * np.pi) for r in rs for f in fs]
if add_linear:
if type(d) == date: feats.append(d.year + rs[-1])
else:
secs_in_year = (datetime(d.year+1, 1, 1) - datetime(d.year, 1, 1)).total_seconds()
feats.append(d.year + ((d - datetime(d.year, 1, 1)).total_seconds() / secs_in_year))
return feats
def add_cyclic_datepart(df:DataFrame, field_name:str, prefix:str=None, drop:bool=True, time:bool=False, add_linear:bool=False):
"Helper function that adds trigonometric date/time features to a date in the column `field_name` of `df`."
make_date(df, field_name)
field = df[field_name]
prefix = ifnone(prefix, re.sub('[Dd]ate$', '', field_name))
series = field.apply(partial(cyclic_dt_features, time=time, add_linear=add_linear))
columns = [prefix + c for c in cyclic_dt_feat_names(time, add_linear)]
df_feats = pd.DataFrame([item for item in series], columns=columns, index=series.index)
for column in columns: df[column] = df_feats[column]
if drop: df.drop(field_name, axis=1, inplace=True)
return df
def add_datepart(df:DataFrame, field_name:str, prefix:str=None, drop:bool=True, time:bool=False):
"Helper function that adds columns relevant to a date in the column `field_name` of `df`."
make_date(df, field_name)
field = df[field_name]
prefix = ifnone(prefix, re.sub('[Dd]ate$', '', field_name))
attr = ['Year', 'Month', 'Week', 'Day', 'Dayofweek', 'Dayofyear', 'Is_month_end', 'Is_month_start',
'Is_quarter_end', 'Is_quarter_start', 'Is_year_end', 'Is_year_start']
if time: attr = attr + ['Hour', 'Minute', 'Second']
for n in attr: df[prefix + n] = getattr(field.dt, n.lower())
df[prefix + 'Elapsed'] = field.astype(np.int64) // 10 ** 9
if drop: df.drop(field_name, axis=1, inplace=True)
return df
def _get_elapsed(df:DataFrame,field_names:Collection[str], date_field:str, base_field:str, prefix:str):
for f in field_names:
day1 = np.timedelta64(1, 'D')
last_date,last_base,res = np.datetime64(),None,[]
for b,v,d in zip(df[base_field].values, df[f].values, df[date_field].values):
if last_base is None or b != last_base:
last_date,last_base = np.datetime64(),b
if v: last_date = d
res.append(((d-last_date).astype('timedelta64[D]') / day1))
df[prefix + f] = res
return df
def add_elapsed_times(df:DataFrame, field_names:Collection[str], date_field:str, base_field:str):
field_names = listify(field_names)
#Make sure date_field is a date and base_field a bool
df[field_names] = df[field_names].astype('bool')
make_date(df, date_field)
work_df = df[field_names + [date_field, base_field]]
work_df = work_df.sort_values([base_field, date_field])
work_df = _get_elapsed(work_df, field_names, date_field, base_field, 'After')
work_df = work_df.sort_values([base_field, date_field], ascending=[True, False])
work_df = _get_elapsed(work_df, field_names, date_field, base_field, 'Before')
for a in ['After' + f for f in field_names] + ['Before' + f for f in field_names]:
work_df[a] = work_df[a].fillna(0).astype(int)
for a,s in zip([True, False], ['_bw', '_fw']):
work_df = work_df.set_index(date_field)
tmp = (work_df[[base_field] + field_names].sort_index(ascending=a)
.groupby(base_field).rolling(7, min_periods=1).sum())
tmp.drop(base_field,1,inplace=True)
tmp.reset_index(inplace=True)
work_df.reset_index(inplace=True)
work_df = work_df.merge(tmp, 'left', [date_field, base_field], suffixes=['', s])
work_df.drop(field_names,1,inplace=True)
return df.merge(work_df, 'left', [date_field, base_field])
def cont_cat_split(df, max_card=20, dep_var=None)->Tuple[List,List]:
"Helper function that returns column names of cont and cat variables from given df."
cont_names, cat_names = [], []
for label in df:
if label == dep_var: continue
if df[label].dtype == int and df[label].unique().shape[0] > max_card or df[label].dtype == float: cont_names.append(label)
else: cat_names.append(label)
return cont_names, cat_names
@dataclass
class TabularProc():
"A processor for tabular dataframes."
cat_names:StrList
cont_names:StrList
def __call__(self, df:DataFrame, test:bool=False):
"Apply the correct function to `df` depending on `test`."
func = self.apply_test if test else self.apply_train
func(df)
def apply_train(self, df:DataFrame):
"Function applied to `df` if it's the train set."
raise NotImplementedError
def apply_test(self, df:DataFrame):
"Function applied to `df` if it's the test set."
self.apply_train(df)
class Categorify(TabularProc):
"Transform the categorical variables to that type."
def apply_train(self, df:DataFrame):
"Transform `self.cat_names` columns in categorical."
self.categories = {}
for n in self.cat_names:
df.loc[:,n] = df.loc[:,n].astype('category').cat.as_ordered()
self.categories[n] = df[n].cat.categories
def apply_test(self, df:DataFrame):
"Transform `self.cat_names` columns in categorical using the codes decided in `apply_train`."
for n in self.cat_names:
df.loc[:,n] = pd.Categorical(df[n], categories=self.categories[n], ordered=True)
FillStrategy = IntEnum('FillStrategy', 'MEDIAN COMMON CONSTANT')
@dataclass
class FillMissing(TabularProc):
"Fill the missing values in continuous columns."
fill_strategy:FillStrategy=FillStrategy.MEDIAN
add_col:bool=True
fill_val:float=0.
def apply_train(self, df:DataFrame):
"Fill missing values in `self.cont_names` according to `self.fill_strategy`."
self.na_dict = {}
for name in self.cont_names:
if pd.isnull(df[name]).sum():
if self.add_col:
df[name+'_na'] = pd.isnull(df[name])
if name+'_na' not in self.cat_names: self.cat_names.append(name+'_na')
if self.fill_strategy == FillStrategy.MEDIAN: filler = df[name].median()
elif self.fill_strategy == FillStrategy.CONSTANT: filler = self.fill_val
else: filler = df[name].dropna().value_counts().idxmax()
df[name] = df[name].fillna(filler)
self.na_dict[name] = filler
def apply_test(self, df:DataFrame):
"Fill missing values in `self.cont_names` like in `apply_train`."
for name in self.cont_names:
if name in self.na_dict:
if self.add_col:
df[name+'_na'] = pd.isnull(df[name])
if name+'_na' not in self.cat_names: self.cat_names.append(name+'_na')
df[name] = df[name].fillna(self.na_dict[name])
elif pd.isnull(df[name]).sum() != 0:
raise Exception(f"""There are nan values in field {name} but there were none in the training set.
Please fix those manually.""")
class Normalize(TabularProc):
"Normalize the continuous variables."
def apply_train(self, df:DataFrame):
"Compute the means and stds of `self.cont_names` columns to normalize them."
self.means,self.stds = {},{}
for n in self.cont_names:
assert is_numeric_dtype(df[n]), (f"""Cannot normalize '{n}' column as it isn't numerical.
Are you sure it doesn't belong in the categorical set of columns?""")
self.means[n],self.stds[n] = df[n].mean(),df[n].std()
df[n] = (df[n]-self.means[n]) / (1e-7 + self.stds[n])
def apply_test(self, df:DataFrame):
"Normalize `self.cont_names` with the same statistics as in `apply_train`."
for n in self.cont_names:
df[n] = (df[n]-self.means[n]) / (1e-7 + self.stds[n])