"Provides basic training and validation with `Learner`" from .torch_core import * from .basic_data import * from .callback import * from .data_block import * from .utils.ipython import gpu_mem_restore import inspect from fastprogress.fastprogress import format_time, IN_NOTEBOOK from time import time from fastai.sixel import plot_sixel __all__ = ['Learner', 'LearnerCallback', 'Recorder', 'RecordOnCPU', 'fit', 'loss_batch', 'train_epoch', 'validate', 'get_preds', 'load_learner'] defaults.lr = slice(3e-3) defaults.wd = 1e-2 defaults.extra_callbacks = None defaults.extra_callback_fns = None def loss_batch(model:nn.Module, xb:Tensor, yb:Tensor, loss_func:OptLossFunc=None, opt:OptOptimizer=None, cb_handler:Optional[CallbackHandler]=None, count:[int]=[1], batch_multiplier:int=1)->Tuple[Union[Tensor,int,float,str]]: "Calculate loss and metrics for a batch, call out to callbacks as necessary." cb_handler = ifnone(cb_handler, CallbackHandler()) if not is_listy(xb): xb = [xb] if not is_listy(yb): yb = [yb] out = model(*xb) if not loss_func: return to_detach(out), yb[0].detach() out = cb_handler.on_loss_begin(out) loss = loss_func(out, *yb)/batch_multiplier count[0]-=1 if opt is not None: loss,skip_bwd = cb_handler.on_backward_begin(loss) if not skip_bwd: loss.backward() if count[0] == 0: if not cb_handler.on_backward_end(): opt.step() if not cb_handler.on_step_end(): opt.zero_grad() count[0] = batch_multiplier return loss.detach().cpu() def get_preds(model:nn.Module, dl:DataLoader, pbar:Optional[PBar]=None, cb_handler:Optional[CallbackHandler]=None, activ:nn.Module=None, loss_func:OptLossFunc=None, n_batch:Optional[int]=None) -> List[Tensor]: "Tuple of predictions and targets, and optional losses (if `loss_func`) using `dl`, max batches `n_batch`." res = [torch.cat(o).cpu() for o in zip(*validate(model, dl, cb_handler=cb_handler, pbar=pbar, average=False, n_batch=n_batch))] if loss_func is not None: with NoneReduceOnCPU(loss_func) as lf: res.append(lf(res[0], res[1])) if activ is not None: res[0] = activ(res[0]) return res def validate(model:nn.Module, dl:DataLoader, loss_func:OptLossFunc=None, cb_handler:Optional[CallbackHandler]=None, pbar:Optional[PBar]=None, average=True, n_batch:Optional[int]=None)->Iterator[Tuple[Union[Tensor,int],...]]: "Calculate `loss_func` of `model` on `dl` in evaluation mode." model.eval() with torch.no_grad(): val_losses,nums = [],[] if cb_handler: cb_handler.set_dl(dl) for xb,yb in progress_bar(dl, parent=pbar, leave=(pbar is not None)): if cb_handler: xb, yb = cb_handler.on_batch_begin(xb, yb, train=False) val_loss = loss_batch(model, xb, yb, loss_func, cb_handler=cb_handler) val_losses.append(val_loss) if not is_listy(yb): yb = [yb] nums.append(first_el(yb).shape[0]) if cb_handler and cb_handler.on_batch_end(val_losses[-1]): break if n_batch and (len(nums)>=n_batch): break nums = np.array(nums, dtype=np.float32) if average: return (to_np(torch.stack(val_losses)) * nums).sum() / nums.sum() else: return val_losses def train_epoch(model:nn.Module, dl:DataLoader, opt:optim.Optimizer, loss_func:LossFunction)->None: "Simple training of `model` for 1 epoch of `dl` using optim `opt` and loss function `loss_func`." model.train() for xb,yb in dl: loss = loss_func(model(xb), yb) loss.backward() opt.step() opt.zero_grad() @dataclass class BasicLearner(): model:nn.Module loss_func:LossFunction opt:optim.Optimizer data:DataBunch def fit(epochs:int, learn:BasicLearner, callbacks:Optional[CallbackList]=None, metrics:OptMetrics=None, batch_multiplier:int=1)->None: "Fit the `model` on `data` and learn using `loss_func` and `opt`." assert len(learn.data.train_dl) != 0, f"""Your training dataloader is empty, can't train a model. Use a smaller batch size (batch size={learn.data.train_dl.batch_size} for {len(learn.data.train_dl.dataset)} elements).""" cb_handler = CallbackHandler(callbacks, metrics) pbar = master_bar(range(epochs)) cb_handler.on_train_begin(epochs, pbar=pbar, metrics=metrics) exception=False try: for epoch in pbar: learn.model.train() cb_handler.set_dl(learn.data.train_dl) cb_handler.on_epoch_begin() count = [batch_multiplier] for xb,yb in progress_bar(learn.data.train_dl, parent=pbar): xb, yb = cb_handler.on_batch_begin(xb, yb) loss = loss_batch(learn.model, xb, yb, learn.loss_func, learn.opt, cb_handler, count=count, batch_multiplier=batch_multiplier) if cb_handler.on_batch_end(loss): break if not cb_handler.skip_validate and not learn.data.empty_val: val_loss = validate(learn.model, learn.data.valid_dl, loss_func=learn.loss_func, cb_handler=cb_handler, pbar=pbar) else: val_loss=None if cb_handler.on_epoch_end(val_loss): break except Exception as e: exception = e raise finally: cb_handler.on_train_end(exception) loss_func_name2activ = {'cross_entropy_loss': F.softmax, 'nll_loss': torch.exp, 'poisson_nll_loss': torch.exp, 'kl_div_loss': torch.exp, 'bce_with_logits_loss': torch.sigmoid, 'cross_entropy': F.softmax, 'kl_div': torch.exp, 'binary_cross_entropy_with_logits': torch.sigmoid, } def _loss_func_name2activ(name:str, axis:int=-1): res = loss_func_name2activ[name] if res == F.softmax: res = partial(F.softmax, dim=axis) return res def _loss_func2activ(loss_func): if getattr(loss_func,'keywords',None): if not loss_func.keywords.get('log_input', True): return axis = getattr(loss_func, 'axis', -1) # flattened loss loss_func = getattr(loss_func, 'func', loss_func) # could have a partial inside flattened loss! Duplicate on purpose. loss_func = getattr(loss_func, 'func', loss_func) cls_name = camel2snake(loss_func.__class__.__name__) if cls_name == 'mix_up_loss': loss_func = loss_func.crit cls_name = camel2snake(loss_func.__class__.__name__) if cls_name in loss_func_name2activ: if cls_name == 'poisson_nll_loss' and (not getattr(loss_func, 'log_input', True)): return return _loss_func_name2activ(cls_name, axis) if getattr(loss_func,'__name__','') in loss_func_name2activ: return _loss_func_name2activ(loss_func.__name__, axis) return noop @dataclass class Learner(): "Trainer for `model` using `data` to minimize `loss_func` with optimizer `opt_func`." data:DataBunch model:nn.Module opt_func:Callable=AdamW loss_func:Callable=None metrics:Collection[Callable]=None true_wd:bool=True bn_wd:bool=True wd:Floats=defaults.wd train_bn:bool=True path:str = None model_dir:PathOrStr = 'models' callback_fns:Collection[Callable]=None callbacks:Collection[Callback]=field(default_factory=list) layer_groups:Collection[nn.Module]=None add_time:bool=True silent:bool=None def __post_init__(self)->None: "Setup path,metrics, callbacks and ensure model directory exists." self.path = Path(ifnone(self.path, self.data.path)) self.model = self.model.to(self.data.device) self.loss_func = self.loss_func or self.data.loss_func self.metrics=listify(self.metrics) if not self.layer_groups: self.layer_groups = [nn.Sequential(*flatten_model(self.model))] self.callbacks = listify(self.callbacks) if self.silent is None: self.silent = defaults.silent self.callback_fns = [partial(Recorder, add_time=self.add_time, silent=self.silent)] + listify(self.callback_fns) def init(self, init): apply_init(self.model, init) def _test_writeable_path(self): path = self.path/self.model_dir try: path.mkdir(parents=True, exist_ok=True) tmp_file = get_tmp_file(path) except OSError as e: raise Exception(f"{e}\nCan't write to '{path}', set `learn.model_dir` attribute in Learner to a full libpath path that is writable") from None os.remove(tmp_file) def lr_range(self, lr:Union[float,slice])->np.ndarray: "Build differential learning rates from `lr`." if not isinstance(lr,slice): return lr if lr.start: res = even_mults(lr.start, lr.stop, len(self.layer_groups)) else: res = [lr.stop/10]*(len(self.layer_groups)-1) + [lr.stop] return np.array(res) def fit(self, epochs:int, lr:Union[Floats,slice]=defaults.lr, wd:Floats=None, callbacks:Collection[Callback]=None, batch_multiplier:int=1)->None: "Fit the model on this learner with `lr` learning rate, `wd` weight decay for `epochs` with `callbacks`." lr = self.lr_range(lr) if wd is None: wd = self.wd if not getattr(self, 'opt', False): self.create_opt(lr, wd) else: self.opt.lr,self.opt.wd = lr,wd callbacks = [cb(self) for cb in self.callback_fns + listify(defaults.extra_callback_fns)] + listify(callbacks) if defaults.extra_callbacks is not None: callbacks += defaults.extra_callbacks fit(epochs, self, metrics=self.metrics, callbacks=self.callbacks+callbacks, batch_multiplier=batch_multiplier) def create_opt(self, lr:Floats, wd:Floats=0.)->None: "Create optimizer with `lr` learning rate and `wd` weight decay." self.opt = OptimWrapper.create(self.opt_func, lr, self.layer_groups, wd=wd, true_wd=self.true_wd, bn_wd=self.bn_wd) def split(self, split_on:SplitFuncOrIdxList)->None: "Split the model at `split_on`." if isinstance(split_on,Callable): split_on = split_on(self.model) self.layer_groups = split_model(self.model, split_on) return self def freeze_to(self, n:int)->None: "Freeze layers up to layer group `n`." for g in self.layer_groups[:n]: for l in g: if not self.train_bn or not isinstance(l, bn_types): requires_grad(l, False) for g in self.layer_groups[n:]: requires_grad(g, True) self.create_opt(defaults.lr) def freeze(self)->None: "Freeze up to last layer group." assert(len(self.layer_groups)>1) self.freeze_to(-1) def unfreeze(self): "Unfreeze entire model." self.freeze_to(0) def export(self, file:PathLikeOrBinaryStream='export.pkl', destroy=False): "Export the state of the `Learner` in `self.path/file`. `file` can be file-like (file or buffer)" if rank_distrib(): return # don't save if slave proc args = ['opt_func', 'loss_func', 'metrics', 'true_wd', 'bn_wd', 'wd', 'train_bn', 'model_dir', 'callback_fns'] state = {a:getattr(self,a) for a in args} state['cb_state'] = {cb.__class__:cb.get_state() for cb in self.callbacks} #layer_groups -> need to find a way #TO SEE: do we save model structure and weights separately? with ModelOnCPU(self.model) as m: state['model'] = m xtra = dict(normalize=self.data.norm.keywords) if getattr(self.data, 'norm', False) else {} state['data'] = self.data.valid_ds.get_state(**xtra) state['cls'] = self.__class__ try_save(state, self.path, file) if destroy: self.destroy() def save(self, file:PathLikeOrBinaryStream=None, return_path:bool=False, with_opt:bool=True): "Save model and optimizer state (if `with_opt`) with `file` to `self.model_dir`. `file` can be file-like (file or buffer)" if is_pathlike(file): self._test_writeable_path() if rank_distrib(): return # don't save if slave proc target = self.path/self.model_dir/f'{file}.pth' if is_pathlike(file) else file if not hasattr(self, 'opt'): with_opt=False if not with_opt: state = get_model(self.model).state_dict() else: state = {'model': get_model(self.model).state_dict(), 'opt':self.opt.state_dict()} torch.save(state, target) if return_path: return target def dl(self, ds_type:DatasetType=DatasetType.Valid): "Return DataLoader for DatasetType `ds_type`." return self.data.dl(ds_type) def load(self, file:PathLikeOrBinaryStream=None, device:torch.device=None, strict:bool=True, with_opt:bool=None, purge:bool=True, remove_module:bool=False): "Load model and optimizer state (if `with_opt`) `file` from `self.model_dir` using `device`. `file` can be file-like (file or buffer)" if purge: self.purge(clear_opt=ifnone(with_opt, False)) if device is None: device = self.data.device elif isinstance(device, int): device = torch.device('cuda', device) source = self.path/self.model_dir/f'{file}.pth' if is_pathlike(file) else file state = torch.load(source, map_location=device) if set(state.keys()) == {'model', 'opt'}: model_state = state['model'] if remove_module: model_state = remove_module_load(model_state) get_model(self.model).load_state_dict(model_state, strict=strict) if ifnone(with_opt,True): if not hasattr(self, 'opt'): self.create_opt(defaults.lr, self.wd) try: self.opt.load_state_dict(state['opt']) except: pass else: if with_opt: warn("Saved filed doesn't contain an optimizer state.") if remove_module: state = remove_module_load(state) get_model(self.model).load_state_dict(state, strict=strict) del state gc.collect() return self def destroy(self): "Free the Learner internals, leaving just an empty shell that consumes no memory" class ZombieLearner(Learner): msg = "this object has been destroyed" def __getattr__(self, item): print(ZombieLearner.msg); return None def destroyed(*args, **kwargs): print(ZombieLearner.msg) attrs = [k for k in self.__dict__.keys() if not k.startswith("__")] for a in attrs: delattr(self, a) # the instance methods can still be called, but will just give a message methods = [k for k in dir(self) if not k.startswith("__") and inspect.isroutine(getattr(self, k))] for m in methods: setattr(self, m, ZombieLearner.destroyed) self.__class__ = ZombieLearner gc.collect() print("this Learner object self-destroyed - it still exists, but no longer usable") def purge(self, clear_opt:bool=True): "Purge the `Learner` of all cached attributes to release some GPU memory." self._test_writeable_path() attrs_all = [k for k in self.__dict__.keys() if not k.startswith("__")] attrs_pkl = ['bn_wd', 'callback_fns', 'layer_groups', 'loss_func', 'metrics', 'model', 'model_dir', 'opt_func', 'path', 'train_bn', 'true_wd', 'wd'] # +callbacks: get pickled too, but not directly attrs_keep = ['data', 'recorder'] attrs_del = list(set(attrs_all) - set(attrs_keep)) state = {a:getattr(self, a) for a in attrs_pkl} state['cb_state'] = {cb.__class__:cb.get_state() for cb in self.callbacks} if hasattr(self, 'opt'): state['opt'] = self.opt.get_state() tmp_file = get_tmp_file(self.path/self.model_dir) torch.save(state, open(tmp_file, 'wb')) for a in attrs_del: delattr(self, a) gc.collect() state = torch.load(tmp_file) os.remove(tmp_file) for a in attrs_pkl: setattr(self, a, state[a]) cb_state = state.pop('cb_state') self.callbacks = [load_callback(c,s, self) for c,s in cb_state.items()] if not clear_opt and 'opt' in state: try: self.opt = OptimWrapper.load_with_state_and_layer_group(state['opt'], self.layer_groups) except: warn("Wasn't able to properly load the optimizer state again.") del state gc.collect() return self def get_preds(self, ds_type:DatasetType=DatasetType.Valid, with_loss:bool=False, n_batch:Optional[int]=None, pbar:Optional[PBar]=None) -> List[Tensor]: "Return predictions and targets on `ds_type` dataset." lf = self.loss_func if with_loss else None return get_preds(self.model, self.dl(ds_type), cb_handler=CallbackHandler(self.callbacks), activ=_loss_func2activ(self.loss_func), loss_func=lf, n_batch=n_batch, pbar=pbar) def pred_batch(self, ds_type:DatasetType=DatasetType.Valid, batch:Tuple=None, reconstruct:bool=False, with_dropout:bool=False) -> List[Tensor]: with torch.no_grad(): training = self.model.training self.model.train(False) "Return output of the model on one batch from `ds_type` dataset." if batch is not None: xb,yb = batch else: xb,yb = self.data.one_batch(ds_type, detach=False, denorm=False) cb_handler = CallbackHandler(self.callbacks) xb,yb = cb_handler.on_batch_begin(xb,yb, train=False) if not with_dropout: preds = loss_batch(self.model.eval(), xb, yb, cb_handler=cb_handler) else: preds = loss_batch(self.model.eval().apply(self.apply_dropout), xb, yb, cb_handler=cb_handler) res = _loss_func2activ(self.loss_func)(preds[0]) self.model.train(training) if not reconstruct: return res res = res.detach().cpu() ds = self.dl(ds_type).dataset norm = getattr(self.data, 'norm', False) if norm and norm.keywords.get('do_y',False): res = self.data.denorm(res, do_x=True) return [ds.reconstruct(o) for o in res] def backward(self, item): "Pass `item` through the model and computes the gradient. Useful if `backward_hooks` are attached." xb,yb = self.data.one_item(item) loss = loss_batch(self.model.eval(), xb, yb, self.loss_func, opt=FakeOptimizer(), cb_handler=CallbackHandler(self.callbacks)) return loss def predict(self, item:ItemBase, return_x:bool=False, batch_first:bool=True, with_dropout:bool=False, **kwargs): "Return predicted class, label and probabilities for `item`." batch = self.data.one_item(item) res = self.pred_batch(batch=batch, with_dropout=with_dropout) raw_pred,x = grab_idx(res,0,batch_first=batch_first),batch[0] norm = getattr(self.data,'norm',False) if norm: x = self.data.denorm(x) if norm.keywords.get('do_y',False): raw_pred = self.data.denorm(raw_pred) ds = self.data.single_ds pred = ds.y.analyze_pred(raw_pred, **kwargs) x = ds.x.reconstruct(grab_idx(x, 0)) y = ds.y.reconstruct(pred, x) if has_arg(ds.y.reconstruct, 'x') else ds.y.reconstruct(pred) return (x, y, pred, raw_pred) if return_x else (y, pred, raw_pred) def validate(self, dl=None, callbacks=None, metrics=None): "Validate on `dl` with potential `callbacks` and `metrics`." dl = ifnone(dl, self.data.valid_dl) metrics = ifnone(metrics, self.metrics) cb_handler = CallbackHandler(self.callbacks + ifnone(callbacks, []), metrics) cb_handler.on_epoch_begin() val_metrics = validate(self.model, dl, self.loss_func, cb_handler) cb_handler.on_epoch_end(val_metrics) return cb_handler.state_dict['last_metrics'] def show_results(self, ds_type=DatasetType.Valid, rows:int=5, **kwargs): "Show `rows` result of predictions on `ds_type` dataset." #TODO: get read of has_arg x and split_kwargs_by_func if possible #TODO: simplify this and refactor with pred_batch(...reconstruct=True) n_items = rows ** 2 if self.data.train_ds.x._square_show_res else rows if self.dl(ds_type).batch_size < n_items: n_items = self.dl(ds_type).batch_size ds = self.dl(ds_type).dataset self.callbacks.append(RecordOnCPU()) preds = self.pred_batch(ds_type) *self.callbacks,rec_cpu = self.callbacks x,y = rec_cpu.input,rec_cpu.target norm = getattr(self.data,'norm',False) if norm: x = self.data.denorm(x) if norm.keywords.get('do_y',False): y = self.data.denorm(y, do_x=True) preds = self.data.denorm(preds, do_x=True) analyze_kwargs,kwargs = split_kwargs_by_func(kwargs, ds.y.analyze_pred) preds = [ds.y.analyze_pred(grab_idx(preds, i), **analyze_kwargs) for i in range(n_items)] xs = [ds.x.reconstruct(grab_idx(x, i)) for i in range(n_items)] if has_arg(ds.y.reconstruct, 'x'): ys = [ds.y.reconstruct(grab_idx(y, i), x=x) for i,x in enumerate(xs)] zs = [ds.y.reconstruct(z, x=x) for z,x in zip(preds,xs)] else : ys = [ds.y.reconstruct(grab_idx(y, i)) for i in range(n_items)] zs = [ds.y.reconstruct(z) for z in preds] ds.x.show_xyzs(xs, ys, zs, **kwargs) def apply_dropout(self, m): "If a module contains 'dropout' in it's name, it will be switched to .train() mode." if 'dropout' in m.__class__.__name__.lower(): m.train() def predict_with_mc_dropout(self, item:ItemBase, with_dropout:bool=True, n_times=10, **kwargs): "Make predictions with dropout turned on for n_times (default 10)." return [self.predict(item, with_dropout=with_dropout) for _ in range(n_times)] class RecordOnCPU(Callback): "Store the `input` and `target` going through the model on the CPU." def on_batch_begin(self, last_input,last_target,**kwargs): self.input,self.target = to_cpu(last_input),to_cpu(last_target) class LearnerCallback(Callback): "Base class for creating callbacks for a `Learner`." def __init__(self, learn): self._learn = weakref.ref(learn) self.exclude,self.not_min = ['_learn'],[] setattr(self.learn, self.cb_name, self) def __getattr__(self,k): return getattr(self.learn, k) def __setstate__(self,data:Any): self.__dict__.update(data) @property def learn(self) -> Learner: return self._learn() @learn.setter def learn(self, learn: Learner) -> None: self._learn = weakref.ref(learn) @property def cb_name(self): return camel2snake(self.__class__.__name__) class Recorder(LearnerCallback): "A `LearnerCallback` that records epoch, loss, opt and metric data during training." _order=-10 def __init__(self, learn:Learner, add_time:bool=True, silent:bool=False): super().__init__(learn) self.opt = self.learn.opt self.train_dl = self.learn.data.train_dl self.no_val,self.silent,self.add_time = False,silent,add_time def on_train_begin(self, pbar:PBar, metrics_names:Collection[str], **kwargs:Any)->None: "Initialize recording status at beginning of training." self.pbar = pbar self.names = ['epoch', 'train_loss'] if self.no_val else ['epoch', 'train_loss', 'valid_loss'] self.metrics_names = metrics_names if hasattr(self, '_added_met_names'): self.metrics_names += self._added_met_names self.names += self.metrics_names if self.add_time: self.names.append('time') if not self.silent: self.pbar.write(self.names, table=True) self.losses,self.val_losses,self.lrs,self.moms,self.metrics,self.nb_batches = [],[],[],[],[],[] def on_epoch_begin(self, **kwargs:Any)->None: if self.add_time: self.start_epoch = time() def on_batch_begin(self, train, **kwargs:Any)->None: "Record learning rate and momentum at beginning of batch." if train: self.lrs.append(self.opt.lr) self.moms.append(self.opt.mom) def on_backward_begin(self, smooth_loss:Tensor, **kwargs:Any)->None: "Record the loss before any other callback has a chance to modify it." self.losses.append(smooth_loss) if self.pbar is not None and hasattr(self.pbar,'child'): self.pbar.child.comment = f'{smooth_loss:.4f}' def on_epoch_end(self, epoch:int, num_batch:int, smooth_loss:Tensor, last_metrics=MetricsList, **kwargs:Any)->bool: "Save epoch info: num_batch, smooth_loss, metrics." self.nb_batches.append(num_batch) if last_metrics is not None: self.val_losses.append(last_metrics[0]) else: last_metrics = [] if self.no_val else [None] if len(last_metrics) > 1: self.metrics.append(last_metrics[1:]) self.format_stats([epoch, smooth_loss] + last_metrics) def format_stats(self, stats:TensorOrNumList)->None: "Format stats before printing." str_stats = [] for name,stat in zip(self.names,stats): str_stats.append('#na#' if stat is None else str(stat) if isinstance(stat, int) else f'{stat:.6f}') if self.add_time: str_stats.append(format_time(time() - self.start_epoch)) if not self.silent: self.pbar.write(str_stats, table=True) def add_metric_names(self, names): "Add `names` to the inner metric names." if hasattr(self, '_added_met_names'): self._added_met_names += names else: self._added_met_names = names def plot_lr(self, show_moms=False, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]: "Plot learning rate, `show_moms` to include momentum." lrs = self._split_list(self.lrs, skip_start, skip_end) iterations = self._split_list(range_of(self.lrs), skip_start, skip_end) if show_moms: moms = self._split_list(self.moms, skip_start, skip_end) fig, axs = plt.subplots(1,2, figsize=(12,4)) axs[0].plot(iterations, lrs) axs[0].set_xlabel('Iterations') axs[0].set_ylabel('Learning Rate') axs[1].plot(iterations, moms) axs[1].set_xlabel('Iterations') axs[1].set_ylabel('Momentum') else: fig, ax = plt.subplots() ax.plot(iterations, lrs) ax.set_xlabel('Iterations') ax.set_ylabel('Learning Rate') if ifnone(return_fig, defaults.return_fig): return fig if not IN_NOTEBOOK: plot_sixel(fig) @staticmethod def smoothen_by_spline(xs, ys, **kwargs): xs = np.arange(len(ys)) spl = scipy.interpolate.UnivariateSpline(xs, ys, **kwargs) ys = spl(xs) return ys def plot(self, skip_start:int=10, skip_end:int=5, suggestion:bool=False, return_fig:bool=None, **kwargs)->Optional[plt.Figure]: "Plot learning rate and losses, trimmed between `skip_start` and `skip_end`. Optionally plot and return min gradient" lrs = self._split_list(self.lrs, skip_start, skip_end) losses = self._split_list(self.losses, skip_start, skip_end) losses = [x.item() for x in losses] if 'k' in kwargs: losses = self.smoothen_by_spline(lrs, losses, **kwargs) fig, ax = plt.subplots(1,1) ax.plot(lrs, losses) ax.set_ylabel("Loss") ax.set_xlabel("Learning Rate") ax.set_xscale('log') ax.xaxis.set_major_formatter(plt.FormatStrFormatter('%.0e')) if suggestion: try: mg = (np.gradient(np.array(losses))).argmin() except: print("Failed to compute the gradients, there might not be enough points.") return print(f"Min numerical gradient: {lrs[mg]:.2E}") ax.plot(lrs[mg],losses[mg],markersize=10,marker='o',color='red') self.min_grad_lr = lrs[mg] ml = np.argmin(losses) print(f"Min loss divided by 10: {lrs[ml]/10:.2E}") if ifnone(return_fig, defaults.return_fig): return fig if not IN_NOTEBOOK: plot_sixel(fig) def plot_losses(self, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]: "Plot training and validation losses." fig, ax = plt.subplots(1,1) losses = self._split_list(self.losses, skip_start, skip_end) iterations = self._split_list(range_of(self.losses), skip_start, skip_end) ax.plot(iterations, losses, label='Train') val_iter = self._split_list_val(np.cumsum(self.nb_batches), skip_start, skip_end) val_losses = self._split_list_val(self.val_losses, skip_start, skip_end) ax.plot(val_iter, val_losses, label='Validation') ax.set_ylabel('Loss') ax.set_xlabel('Batches processed') ax.legend() if ifnone(return_fig, defaults.return_fig): return fig if not IN_NOTEBOOK: plot_sixel(fig) def plot_metrics(self, skip_start:int=0, skip_end:int=0, return_fig:bool=None)->Optional[plt.Figure]: "Plot metrics collected during training." assert len(self.metrics) != 0, "There are no metrics to plot." fig, axes = plt.subplots(len(self.metrics[0]),1,figsize=(6, 4*len(self.metrics[0]))) val_iter = self._split_list_val(np.cumsum(self.nb_batches), skip_start, skip_end) axes = axes.flatten() if len(self.metrics[0]) != 1 else [axes] for i, ax in enumerate(axes): values = [met[i] for met in self.metrics] values = self._split_list_val(values, skip_start, skip_end) ax.plot(val_iter, values) ax.set_ylabel(str(self.metrics_names[i])) ax.set_xlabel('Batches processed') if ifnone(return_fig, defaults.return_fig): return fig if not IN_NOTEBOOK: plot_sixel(fig) def _split_list(self, vals:Collection[float], skip_start:int, skip_end:int): return vals[skip_start:-skip_end] if skip_end > 0 else vals[skip_start:] def _split_list_val(self, vals:Collection[float], skip_start:int, skip_end:int): val_iter = np.cumsum(self.nb_batches) start_val = (val_iter - skip_start >= 0).nonzero()[0].min() end_val = (val_iter[-1] - val_iter - skip_end >= 0).nonzero()[0].max()+1 return vals[start_val:end_val] if skip_end > 0 else vals[start_val:] class FakeOptimizer(): def step(self): pass def zero_grad(self): pass def load_callback(class_func, state, learn:Learner): init_kwargs, others = split_kwargs_by_func(state, class_func.__init__) res = class_func(learn, **init_kwargs) if issubclass(class_func, LearnerCallback) else class_func(**init_kwargs) for k,v in others.items(): setattr(res, k, v) return res def load_learner(path:PathOrStr, file:PathLikeOrBinaryStream='export.pkl', test:ItemList=None, **db_kwargs): "Load a `Learner` object saved with `export_state` in `path/file` with empty data, optionally add `test` and load on `cpu`. `file` can be file-like (file or buffer)" source = Path(path)/file if is_pathlike(file) else file state = torch.load(source, map_location='cpu') if defaults.device == torch.device('cpu') else torch.load(source) model = state.pop('model') src = LabelLists.load_state(path, state.pop('data')) if test is not None: src.add_test(test) data = src.databunch(**db_kwargs) cb_state = state.pop('cb_state') clas_func = state.pop('cls') res = clas_func(data, model, **state) res.callback_fns = state['callback_fns'] #to avoid duplicates res.callbacks = [load_callback(c,s, res) for c,s in cb_state.items()] return res