"Hooks provide extensibility at the model level." from ..torch_core import * from ..callback import * from ..basic_train import * from ..basic_data import * __all__ = ['ActivationStats', 'Hook', 'HookCallback', 'Hooks', 'hook_output', 'hook_outputs', 'model_sizes', 'num_features_model', 'model_summary', 'dummy_eval', 'dummy_batch'] class Hook(): "Create a hook on `m` with `hook_func`." def __init__(self, m:nn.Module, hook_func:HookFunc, is_forward:bool=True, detach:bool=True): self.hook_func,self.detach,self.stored = hook_func,detach,None f = m.register_forward_hook if is_forward else m.register_backward_hook self.hook = f(self.hook_fn) self.removed = False def hook_fn(self, module:nn.Module, input:Tensors, output:Tensors): "Applies `hook_func` to `module`, `input`, `output`." if self.detach: input = (o.detach() for o in input ) if is_listy(input ) else input.detach() output = (o.detach() for o in output) if is_listy(output) else output.detach() self.stored = self.hook_func(module, input, output) def remove(self): "Remove the hook from the model." if not self.removed: self.hook.remove() self.removed=True def __enter__(self, *args): return self def __exit__(self, *args): self.remove() class Hooks(): "Create several hooks on the modules in `ms` with `hook_func`." def __init__(self, ms:Collection[nn.Module], hook_func:HookFunc, is_forward:bool=True, detach:bool=True): self.hooks = [Hook(m, hook_func, is_forward, detach) for m in ms] def __getitem__(self,i:int)->Hook: return self.hooks[i] def __len__(self)->int: return len(self.hooks) def __iter__(self): return iter(self.hooks) @property def stored(self): return [o.stored for o in self] def remove(self): "Remove the hooks from the model." for h in self.hooks: h.remove() def __enter__(self, *args): return self def __exit__ (self, *args): self.remove() def _hook_inner(m,i,o): return o if isinstance(o,Tensor) else o if is_listy(o) else list(o) def hook_output (module:nn.Module, detach:bool=True, grad:bool=False)->Hook: "Return a `Hook` that stores activations of `module` in `self.stored`" return Hook(module, _hook_inner, detach=detach, is_forward=not grad) def hook_outputs(modules:Collection[nn.Module], detach:bool=True, grad:bool=False)->Hooks: "Return `Hooks` that store activations of all `modules` in `self.stored`" return Hooks(modules, _hook_inner, detach=detach, is_forward=not grad) class HookCallback(LearnerCallback): "Callback that can be used to register hooks on `modules`. Implement the corresponding function in `self.hook`." def __init__(self, learn:Learner, modules:Sequence[nn.Module]=None, do_remove:bool=True): super().__init__(learn) self.modules,self.do_remove = modules,do_remove def on_train_begin(self, **kwargs): "Register the `Hooks` on `self.modules`." if not self.modules: self.modules = [m for m in flatten_model(self.learn.model) if hasattr(m, 'weight')] self.hooks = Hooks(self.modules, self.hook) def on_train_end(self, **kwargs): "Remove the `Hooks`." if self.do_remove: self.remove() def remove(self): if getattr(self, 'hooks', None): self.hooks.remove() def __del__(self): self.remove() class ActivationStats(HookCallback): "Callback that record the mean and std of activations." def on_train_begin(self, **kwargs): "Initialize stats." super().on_train_begin(**kwargs) self.stats = [] def hook(self, m:nn.Module, i:Tensors, o:Tensors)->Tuple[Rank0Tensor,Rank0Tensor]: "Take the mean and std of `o`." return o.mean().item(),o.std().item() def on_batch_end(self, train, **kwargs): "Take the stored results and puts it in `self.stats`" if train: self.stats.append(self.hooks.stored) def on_train_end(self, **kwargs): "Polish the final result." super().on_train_end(**kwargs) self.stats = tensor(self.stats).permute(2,1,0) def dummy_batch(m: nn.Module, size:tuple=(64,64))->Tensor: "Create a dummy batch to go through `m` with `size`." ch_in = in_channels(m) return one_param(m).new(1, ch_in, *size).requires_grad_(False).uniform_(-1.,1.) def dummy_eval(m:nn.Module, size:tuple=(64,64)): "Pass a `dummy_batch` in evaluation mode in `m` with `size`." m.eval() return m(dummy_batch(m, size)) #return m.eval()(dummy_batch(m, size)) def model_sizes(m:nn.Module, size:tuple=(64,64))->Tuple[Sizes,Tensor,Hooks]: "Pass a dummy input through the model `m` to get the various sizes of activations." with hook_outputs(m) as hooks: x = dummy_eval(m, size) return [o.stored.shape for o in hooks] def num_features_model(m:nn.Module)->int: "Return the number of output features for `model`." sz = 64 while True: try: return model_sizes(m, size=(sz,sz))[-1][1] except Exception as e: sz *= 2 if sz > 2048: raise def total_params(m:nn.Module)->int: params, trainable = 0, False if hasattr(m, "weight") and hasattr(m.weight, "size"): params += m.weight.numel() trainable = m.weight.requires_grad if hasattr(m, "bias") and hasattr(m.bias, "size"): params += m.bias.numel() return params, trainable def hook_params(modules:Collection[nn.Module])->Hooks: return Hooks(modules, lambda m, i, o: total_params(m)) def params_size(m: Union[nn.Module,Learner], size: tuple = (3, 64, 64))->Tuple[Sizes, Tensor, Hooks]: "Pass a dummy input through the model to get the various sizes. Returns (res,x,hooks) if `full`" if isinstance(m, Learner): if m.data.is_empty: raise Exception("This is an empty `Learner` and `Learner.summary` requires some data to pass through the model.") ds_type = DatasetType.Train if m.data.train_dl else (DatasetType.Valid if m.data.valid_dl else DatasetType.Test) x = m.data.one_batch(ds_type=ds_type, detach=False, denorm=False)[0] x = [o[:1] for o in x] if is_listy(x) else x[:1] m = m.model elif isinstance(m, nn.Module): x = next(m.parameters()).new(1, *size) else: raise TypeError('You should either pass in a Learner or nn.Module') with hook_outputs(flatten_model(m)) as hook_o: with hook_params(flatten_model(m))as hook_p: x = m.eval()(*x) if is_listy(x) else m.eval()(x) output_size = [((o.stored.shape[1:]) if o.stored is not None else None) for o in hook_o] params = [(o.stored if o.stored is not None else (None,None)) for o in hook_p] params, trainables = map(list,zip(*params)) return output_size, params, trainables def get_layer_name(layer:nn.Module)->str: return str(layer.__class__).split(".")[-1].split("'")[0] def layers_info(m:Collection[nn.Module]) -> Collection[namedtuple]: func = lambda m:list(map(get_layer_name, flatten_model(m))) layers_names = func(m.model) if isinstance(m, Learner) else func(m) layers_sizes, layers_params, layers_trainable = params_size(m) layer_info = namedtuple('Layer_Information', ['Layer', 'OutputSize', 'Params', 'Trainable']) return list(map(layer_info, layers_names, layers_sizes, layers_params, layers_trainable)) def model_summary(m:Learner, n:int=70): "Print a summary of `m` using a output text width of `n` chars" info = layers_info(m) header = ["Layer (type)", "Output Shape", "Param #", "Trainable"] res = m.model.__class__.__name__ + "\n" res += "=" * n + "\n" res += f"{header[0]:<20} {header[1]:<20} {header[2]:<10} {header[3]:<10}\n" res += "=" * n + "\n" total_params = 0 total_trainable_params = 0 for layer, size, params, trainable in info: if size is None: continue total_params += int(params) total_trainable_params += int(params) * trainable size, trainable = str(list(size)), str(trainable) res += f"{layer:<20} {size:<20} {int(params):<10,} {trainable:<10}\n" res += "_" * n + "\n" res += f"\nTotal params: {total_params:,}\n" res += f"Total trainable params: {total_trainable_params:,}\n" res += f"Total non-trainable params: {total_params - total_trainable_params:,}\n" res += f"Optimized with {str(m.opt_func)[25:-1].replace('>', '')}\n" if m.true_wd: res += f"Using true weight decay as discussed in https://www.fast.ai/2018/07/02/adam-weight-decay/ \n" if "wd" in str(m.opt_func) or "weight_decay" in str(m.opt_func): res += f"\x1b[1;31m Specifying weight decay in the optimizer has no effect, Learner will overwrite \x1b[0m \n" if "lr" in str(m.opt_func) or "learning_rate" in str(m.opt_func): res += f"\x1b[1;31m Specifying lr in the optimizer has no effect, pass it to fit or the defaults.lr will apply \x1b[0m \n" res += f"Loss function : {m.loss_func.__class__.__name__}\n" res += "=" * n + "\n" res += "Callbacks functions applied \n" res += "\n".join([f" {cbs.__class__.__name__}" for cbs in m.callbacks]) return PrettyString(res) Learner.summary = model_summary