"Regroups lr adjustment to seq_len, AR and TAR" from ..torch_core import * from ..callback import * from ..basic_train import Learner, LearnerCallback __all__ = ['RNNTrainer'] class RNNTrainer(LearnerCallback): "`Callback` that regroups lr adjustment to seq_len, AR and TAR." def __init__(self, learn:Learner, alpha:float=0., beta:float=0.): super().__init__(learn) self.not_min += ['raw_out', 'out'] self.alpha,self.beta = alpha,beta def on_epoch_begin(self, **kwargs): "Reset the hidden state of the model." self.learn.model.reset() def on_loss_begin(self, last_output:Tuple[Tensor,Tensor,Tensor], **kwargs): "Save the extra outputs for later and only returns the true output." self.raw_out,self.out = last_output[1],last_output[2] return {'last_output': last_output[0]} def on_backward_begin(self, last_loss:Rank0Tensor, last_input:Tensor, **kwargs): "Apply AR and TAR to `last_loss`." #AR and TAR if self.alpha != 0.: last_loss += self.alpha * self.out[-1].float().pow(2).mean() if self.beta != 0.: h = self.raw_out[-1] if len(h)>1: last_loss += self.beta * (h[:,1:] - h[:,:-1]).float().pow(2).mean() return {'last_loss': last_loss}