from ..torch_core import * from ..basic_data import * from ..basic_train import * from ..train import ClassificationInterpretation import matplotlib.cm as cm __all__ = ['TextClassificationInterpretation'] def value2rgba(x:float, cmap:Callable=cm.RdYlGn, alpha_mult:float=1.0)->Tuple: "Convert a value `x` from 0 to 1 (inclusive) to an RGBA tuple according to `cmap` times transparency `alpha_mult`." c = cmap(x) rgb = (np.array(c[:-1]) * 255).astype(int) a = c[-1] * alpha_mult return tuple(rgb.tolist() + [a]) def piece_attn_html(pieces:List[str], attns:List[float], sep:str=' ', **kwargs)->str: html_code,spans = [''], [] for p, a in zip(pieces, attns): p = html.escape(p) c = str(value2rgba(a, alpha_mult=0.5, **kwargs)) spans.append(f'{p}') html_code.append(sep.join(spans)) html_code.append('') return ''.join(html_code) def show_piece_attn(*args, **kwargs): from IPython.display import display, HTML display(HTML(piece_attn_html(*args, **kwargs))) def _eval_dropouts(mod): module_name = mod.__class__.__name__ if 'Dropout' in module_name or 'BatchNorm' in module_name: mod.training = False for module in mod.children(): _eval_dropouts(module) class TextClassificationInterpretation(ClassificationInterpretation): """Provides an interpretation of classification based on input sensitivity. This was designed for AWD-LSTM only for the moment, because Transformer already has its own attentional model. """ def __init__(self, learn: Learner, preds: Tensor, y_true: Tensor, losses: Tensor, ds_type: DatasetType = DatasetType.Valid): super(TextClassificationInterpretation, self).__init__(learn,preds,y_true,losses,ds_type) self.model = learn.model @classmethod def from_learner(cls, learn: Learner, ds_type:DatasetType=DatasetType.Valid, activ:nn.Module=None): "Gets preds, y_true, losses to construct base class from a learner" preds_res = learn.get_preds(ds_type=ds_type, activ=activ, with_loss=True, ordered=True) return cls(learn, *preds_res) def intrinsic_attention(self, text:str, class_id:int=None): """Calculate the intrinsic attention of the input w.r.t to an output `class_id`, or the classification given by the model if `None`. For reference, see the Sequential Jacobian session at https://www.cs.toronto.edu/~graves/preprint.pdf """ self.model.train() _eval_dropouts(self.model) self.model.zero_grad() self.model.reset() ids = self.data.one_item(text)[0] emb = self.model[0].module.encoder(ids).detach().requires_grad_(True) lstm_output = self.model[0].module(emb, from_embeddings=True) self.model.eval() cl = self.model[1](lstm_output + (torch.zeros_like(ids).byte(),))[0].softmax(dim=-1) if class_id is None: class_id = cl.argmax() cl[0][class_id].backward() attn = emb.grad.squeeze().abs().sum(dim=-1) attn /= attn.max() tokens = self.data.single_ds.reconstruct(ids[0]) return tokens, attn def html_intrinsic_attention(self, text:str, class_id:int=None, **kwargs)->str: text, attn = self.intrinsic_attention(text, class_id) return piece_attn_html(text.text.split(), to_np(attn), **kwargs) def show_intrinsic_attention(self, text:str, class_id:int=None, **kwargs)->None: text, attn = self.intrinsic_attention(text, class_id) show_piece_attn(text.text.split(), to_np(attn), **kwargs) def show_top_losses(self, k:int, max_len:int=70)->None: """ Create a tabulation showing the first `k` texts in top_losses along with their prediction, actual,loss, and probability of actual class. `max_len` is the maximum number of tokens displayed. """ from IPython.display import display, HTML items = [] tl_val,tl_idx = self.top_losses() for i,idx in enumerate(tl_idx): if k <= 0: break k -= 1 tx,cl = self.data.dl(self.ds_type).dataset[idx] cl = cl.data classes = self.data.classes txt = ' '.join(tx.text.split(' ')[:max_len]) if max_len is not None else tx.text tmp = [txt, f'{classes[self.pred_class[idx]]}', f'{classes[cl]}', f'{self.losses[idx]:.2f}', f'{self.preds[idx][cl]:.2f}'] items.append(tmp) items = np.array(items) names = ['Text', 'Prediction', 'Actual', 'Loss', 'Probability'] df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) with pd.option_context('display.max_colwidth', -1): display(HTML(df.to_html(index=False)))