Sabrina Bottazzi commited on
Commit
80ea839
·
1 Parent(s): b092c39

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: 3-classifier-finetuned-padchest
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ config: default
19
+ split: train
20
+ args: default
21
+ metrics:
22
+ - name: Accuracy
23
+ type: accuracy
24
+ value: 0.7250755287009063
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # 3-classifier-finetuned-padchest
31
+
32
+ This model is a fine-tuned version of [nickmuchi/vit-finetuned-chest-xray-pneumonia](https://huggingface.co/nickmuchi/vit-finetuned-chest-xray-pneumonia) on the imagefolder dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.8505
35
+ - Accuracy: 0.7251
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 32
56
+ - eval_batch_size: 32
57
+ - seed: 42
58
+ - gradient_accumulation_steps: 4
59
+ - total_train_batch_size: 128
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 20
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
69
+ | 2.0499 | 1.0 | 16 | 1.8761 | 0.3686 |
70
+ | 1.704 | 2.0 | 32 | 1.5961 | 0.4955 |
71
+ | 1.5393 | 3.0 | 48 | 1.3570 | 0.5770 |
72
+ | 1.3161 | 4.0 | 64 | 1.2687 | 0.5770 |
73
+ | 1.1991 | 5.0 | 80 | 1.1740 | 0.6073 |
74
+ | 1.1459 | 6.0 | 96 | 1.1388 | 0.6073 |
75
+ | 1.071 | 7.0 | 112 | 1.0763 | 0.6405 |
76
+ | 0.9948 | 8.0 | 128 | 1.0419 | 0.6526 |
77
+ | 0.9902 | 9.0 | 144 | 0.9869 | 0.6979 |
78
+ | 0.9515 | 10.0 | 160 | 0.9825 | 0.6767 |
79
+ | 0.9277 | 11.0 | 176 | 0.9645 | 0.6858 |
80
+ | 0.9182 | 12.0 | 192 | 0.9264 | 0.7009 |
81
+ | 0.895 | 13.0 | 208 | 0.9138 | 0.6979 |
82
+ | 0.8765 | 14.0 | 224 | 0.9089 | 0.7100 |
83
+ | 0.8536 | 15.0 | 240 | 0.8941 | 0.7009 |
84
+ | 0.8385 | 16.0 | 256 | 0.8764 | 0.7221 |
85
+ | 0.8187 | 17.0 | 272 | 0.8659 | 0.7160 |
86
+ | 0.8172 | 18.0 | 288 | 0.8673 | 0.7069 |
87
+ | 0.8101 | 19.0 | 304 | 0.8530 | 0.7341 |
88
+ | 0.8127 | 20.0 | 320 | 0.8505 | 0.7251 |
89
+
90
+
91
+ ### Framework versions
92
+
93
+ - Transformers 4.28.0.dev0
94
+ - Pytorch 2.0.0+cu117
95
+ - Datasets 2.18.0
96
+ - Tokenizers 0.13.3