File size: 4,861 Bytes
25b4f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: 5-classifier-finetuned-padchest
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7643504531722054
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# 5-classifier-finetuned-padchest

This model is a fine-tuned version of [nickmuchi/vit-finetuned-chest-xray-pneumonia](https://huggingface.co/nickmuchi/vit-finetuned-chest-xray-pneumonia) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7307
- Accuracy: 0.7644

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.0492        | 1.0   | 16   | 1.9604          | 0.3142   |
| 1.8545        | 2.0   | 32   | 1.7361          | 0.4079   |
| 1.724         | 3.0   | 48   | 1.5064          | 0.5166   |
| 1.4761        | 4.0   | 64   | 1.3116          | 0.5710   |
| 1.3215        | 5.0   | 80   | 1.2030          | 0.6344   |
| 1.2325        | 6.0   | 96   | 1.0904          | 0.6254   |
| 1.124         | 7.0   | 112  | 1.0145          | 0.6677   |
| 1.0516        | 8.0   | 128  | 0.9864          | 0.6707   |
| 0.9858        | 9.0   | 144  | 0.9372          | 0.6767   |
| 0.9518        | 10.0  | 160  | 0.9161          | 0.6949   |
| 0.9612        | 11.0  | 176  | 0.8916          | 0.6949   |
| 0.8994        | 12.0  | 192  | 0.8579          | 0.7069   |
| 0.8194        | 13.0  | 208  | 0.8281          | 0.7100   |
| 0.8141        | 14.0  | 224  | 0.8064          | 0.7341   |
| 0.8056        | 15.0  | 240  | 0.8272          | 0.7221   |
| 0.7953        | 16.0  | 256  | 0.7751          | 0.7251   |
| 0.7679        | 17.0  | 272  | 0.7638          | 0.7523   |
| 0.7262        | 18.0  | 288  | 0.7867          | 0.7432   |
| 0.7302        | 19.0  | 304  | 0.7835          | 0.7311   |
| 0.7237        | 20.0  | 320  | 0.7698          | 0.7492   |
| 0.6496        | 21.0  | 336  | 0.7618          | 0.7523   |
| 0.6708        | 22.0  | 352  | 0.7595          | 0.7492   |
| 0.6719        | 23.0  | 368  | 0.7455          | 0.7553   |
| 0.6361        | 24.0  | 384  | 0.7993          | 0.7221   |
| 0.6125        | 25.0  | 400  | 0.7372          | 0.7432   |
| 0.6392        | 26.0  | 416  | 0.7321          | 0.7613   |
| 0.6175        | 27.0  | 432  | 0.7310          | 0.7704   |
| 0.5613        | 28.0  | 448  | 0.7244          | 0.7462   |
| 0.5831        | 29.0  | 464  | 0.7535          | 0.7523   |
| 0.5892        | 30.0  | 480  | 0.7299          | 0.7583   |
| 0.5259        | 31.0  | 496  | 0.7211          | 0.7674   |
| 0.5553        | 32.0  | 512  | 0.7564          | 0.7341   |
| 0.5497        | 33.0  | 528  | 0.7233          | 0.7704   |
| 0.5699        | 34.0  | 544  | 0.7314          | 0.7523   |
| 0.5263        | 35.0  | 560  | 0.7334          | 0.7583   |
| 0.4953        | 36.0  | 576  | 0.6991          | 0.7674   |
| 0.5029        | 37.0  | 592  | 0.7191          | 0.7674   |
| 0.5253        | 38.0  | 608  | 0.7233          | 0.7704   |
| 0.4657        | 39.0  | 624  | 0.7204          | 0.7644   |
| 0.498         | 40.0  | 640  | 0.7236          | 0.7674   |
| 0.4768        | 41.0  | 656  | 0.7242          | 0.7734   |
| 0.5016        | 42.0  | 672  | 0.7405          | 0.7553   |
| 0.4774        | 43.0  | 688  | 0.7363          | 0.7674   |
| 0.4859        | 44.0  | 704  | 0.7208          | 0.7734   |
| 0.4628        | 45.0  | 720  | 0.7393          | 0.7674   |
| 0.4515        | 46.0  | 736  | 0.7078          | 0.7734   |
| 0.4297        | 47.0  | 752  | 0.7287          | 0.7674   |
| 0.4023        | 48.0  | 768  | 0.7138          | 0.7734   |
| 0.4404        | 49.0  | 784  | 0.7272          | 0.7674   |
| 0.4236        | 50.0  | 800  | 0.7307          | 0.7644   |


### Framework versions

- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.18.0
- Tokenizers 0.13.3