|
|
""" |
|
|
Example script for running inference with the Hugging Face model. |
|
|
""" |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
import warnings |
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore', category=UserWarning, message='.*TypedStorage is deprecated.*') |
|
|
|
|
|
def main(): |
|
|
model_path = "." |
|
|
|
|
|
print("Loading model and tokenizer...") |
|
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
model = model.to(device) |
|
|
model.eval() |
|
|
|
|
|
print(f"Model loaded on {device}") |
|
|
print(f"Model parameters: {sum(p.numel() for p in model.parameters()):,}") |
|
|
|
|
|
prompts = [ |
|
|
"Once upon a time", |
|
|
"The quick brown fox", |
|
|
] |
|
|
|
|
|
for prompt in prompts: |
|
|
print(f"\n{'='*60}") |
|
|
print(f"Prompt: {prompt}") |
|
|
print(f"{'='*60}") |
|
|
|
|
|
inputs = tokenizer(prompt, return_tensors="pt").to(device) |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_length=100, |
|
|
temperature=1.0, |
|
|
top_k=50, |
|
|
top_p=0.9, |
|
|
do_sample=True, |
|
|
pad_token_id=tokenizer.eos_token_id |
|
|
) |
|
|
|
|
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
print(f"\nGenerated:\n{generated_text}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|