shopping-assistant / deploy_example.py
selvaonline's picture
Upload deploy_example.py with huggingface_hub
9df7f3a verified
#!/usr/bin/env python3
"""
Example script for deploying the Shopping Assistant model to Hugging Face Hub
"""
import os
import argparse
import subprocess
import sys
def check_requirements():
"""
Check if the required packages are installed
"""
try:
import huggingface_hub
import transformers
return True
except ImportError as e:
print(f"Error: {e}")
print("Please install the required packages:")
print("pip install huggingface_hub transformers")
return False
def deploy_model():
"""
Deploy the model to Hugging Face Hub
"""
parser = argparse.ArgumentParser(description="Deploy the Shopping Assistant model to Hugging Face Hub")
parser.add_argument("--repo-name", type=str, required=True, help="Hugging Face Hub repository name (e.g., username/model-name)")
parser.add_argument("--token", type=str, help="Hugging Face API token")
parser.add_argument("--private", action="store_true", help="Make the repository private")
args = parser.parse_args()
# Check if the deploy_to_huggingface.py script exists
script_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "deploy_to_huggingface.py")
if not os.path.exists(script_path):
print(f"Error: deploy_to_huggingface.py not found at {script_path}")
print("Please make sure the script exists in the project directory")
return False
# Build the command
cmd = [sys.executable, script_path, "--repo-name", args.repo_name, "--create-inference"]
if args.token:
cmd.extend(["--token", args.token])
if args.private:
cmd.append("--private")
# Execute the command
print(f"Deploying model to {args.repo_name}...")
try:
subprocess.run(cmd, check=True)
print("\nDeployment successful!")
print(f"You can access your model at: https://huggingface.co/{args.repo_name}")
print("\nTo use the model for inference:")
print(f"1. Visit https://huggingface.co/{args.repo_name}")
print("2. Use the inference widget on the model page")
print("3. Or use the API with the following code:")
print(f"""
import requests
API_URL = "https://api-inference.huggingface.co/models/{args.repo_name}"
headers = {{"Authorization": "Bearer YOUR_API_TOKEN"}}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
output = query({{
"inputs": "I'm looking for headphones"
}})
print(output)
""")
return True
except subprocess.CalledProcessError as e:
print(f"Error deploying model: {e}")
return False
if __name__ == "__main__":
if check_requirements():
deploy_model()