Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -83,18 +83,38 @@ def process_deals_data(deals_data):
|
|
| 83 |
|
| 84 |
return processed_deals
|
| 85 |
|
| 86 |
-
# Load the model and tokenizer
|
| 87 |
-
model_path = os.path.dirname(os.path.abspath(__file__))
|
| 88 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 89 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 90 |
-
|
| 91 |
-
# Load the categories
|
| 92 |
try:
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
except Exception as e:
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
# Global variable to store deals data
|
| 100 |
deals_cache = None
|
|
@@ -111,13 +131,37 @@ def classify_text(text, fetch_deals=True):
|
|
| 111 |
# Get the model prediction
|
| 112 |
with torch.no_grad():
|
| 113 |
outputs = model(**inputs)
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
# Sort by score
|
| 123 |
top_categories.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
| 83 |
|
| 84 |
return processed_deals
|
| 85 |
|
| 86 |
+
# Load the e-commerce specific model and tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
try:
|
| 88 |
+
# Try to load the e-commerce BERT model
|
| 89 |
+
tokenizer = AutoTokenizer.from_pretrained("prithivida/ecommerce-bert-base-uncased")
|
| 90 |
+
model = AutoModelForSequenceClassification.from_pretrained("prithivida/ecommerce-bert-base-uncased")
|
| 91 |
+
|
| 92 |
+
# E-commerce BERT categories
|
| 93 |
+
categories = [
|
| 94 |
+
"electronics", "computers", "mobile_phones", "accessories",
|
| 95 |
+
"clothing", "footwear", "watches", "jewelry",
|
| 96 |
+
"home", "kitchen", "furniture", "decor",
|
| 97 |
+
"beauty", "personal_care", "health", "wellness",
|
| 98 |
+
"toys", "games", "sports", "outdoors",
|
| 99 |
+
"books", "stationery", "music", "movies"
|
| 100 |
+
]
|
| 101 |
+
print("Using e-commerce BERT model")
|
| 102 |
except Exception as e:
|
| 103 |
+
# Fall back to local model if e-commerce BERT fails to load
|
| 104 |
+
print(f"Error loading e-commerce BERT model: {str(e)}")
|
| 105 |
+
print("Falling back to local model")
|
| 106 |
+
|
| 107 |
+
model_path = os.path.dirname(os.path.abspath(__file__))
|
| 108 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 109 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 110 |
+
|
| 111 |
+
# Load the local categories
|
| 112 |
+
try:
|
| 113 |
+
with open(os.path.join(model_path, "categories.json"), "r") as f:
|
| 114 |
+
categories = json.load(f)
|
| 115 |
+
except Exception as e:
|
| 116 |
+
print(f"Error loading categories: {str(e)}")
|
| 117 |
+
categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"]
|
| 118 |
|
| 119 |
# Global variable to store deals data
|
| 120 |
deals_cache = None
|
|
|
|
| 131 |
# Get the model prediction
|
| 132 |
with torch.no_grad():
|
| 133 |
outputs = model(**inputs)
|
| 134 |
+
|
| 135 |
+
# Handle different model output formats
|
| 136 |
+
if hasattr(outputs, 'logits'):
|
| 137 |
+
# For models that return logits
|
| 138 |
+
if outputs.logits.shape[1] == len(categories):
|
| 139 |
+
# Multi-label classification
|
| 140 |
+
predictions = torch.sigmoid(outputs.logits)
|
| 141 |
+
|
| 142 |
+
# Get the top categories
|
| 143 |
+
top_categories = []
|
| 144 |
+
for i, score in enumerate(predictions[0]):
|
| 145 |
+
if score > 0.3: # Lower threshold for e-commerce model
|
| 146 |
+
top_categories.append((categories[i], score.item()))
|
| 147 |
+
else:
|
| 148 |
+
# Single-label classification
|
| 149 |
+
probabilities = torch.softmax(outputs.logits, dim=1)
|
| 150 |
+
values, indices = torch.topk(probabilities, 3)
|
| 151 |
+
|
| 152 |
+
top_categories = []
|
| 153 |
+
for i, idx in enumerate(indices[0]):
|
| 154 |
+
if idx < len(categories):
|
| 155 |
+
top_categories.append((categories[idx.item()], values[0][i].item()))
|
| 156 |
+
else:
|
| 157 |
+
# Fallback for other model formats
|
| 158 |
+
predictions = torch.sigmoid(outputs[0])
|
| 159 |
+
|
| 160 |
+
# Get the top categories
|
| 161 |
+
top_categories = []
|
| 162 |
+
for i, score in enumerate(predictions[0]):
|
| 163 |
+
if score > 0.5:
|
| 164 |
+
top_categories.append((categories[i], score.item()))
|
| 165 |
|
| 166 |
# Sort by score
|
| 167 |
top_categories.sort(key=lambda x: x[1], reverse=True)
|