#!/usr/bin/env python3 """ Demo script for using the Shopping Assistant model with the Hugging Face Inference API """ import requests import json import argparse def query_model(text, api_token=None, model_id="selvaonline/shopping-assistant"): """ Query the model using the Hugging Face Inference API """ api_url = f"https://api-inference.huggingface.co/models/{model_id}" headers = {} if api_token: headers["Authorization"] = f"Bearer {api_token}" payload = { "inputs": text, "options": { "wait_for_model": True } } response = requests.post(api_url, headers=headers, json=payload) if response.status_code == 200: return response.json() else: print(f"Error: {response.status_code}") print(response.text) return None def process_results(results, text): """ Process the results from the Inference API """ if not results or not isinstance(results, list) or len(results) == 0: return f"No results found for '{text}'" # The API returns logits, we need to convert them to probabilities import numpy as np # Apply sigmoid to convert logits to probabilities probabilities = 1 / (1 + np.exp(-np.array(results[0]))) # Define the categories (should match the model's categories) categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"] # Get the top categories top_categories = [] for i, score in enumerate(probabilities): if score > 0.5: # Threshold for multi-label classification top_categories.append((categories[i], float(score))) # Sort by score top_categories.sort(key=lambda x: x[1], reverse=True) # Format the results if top_categories: result = f"Top categories for '{text}':\n" for category, score in top_categories: result += f" {category}: {score:.4f}\n" result += f"\nBased on your query, I would recommend looking for deals in the {top_categories[0][0]} category." else: result = f"No categories found for '{text}'. Please try a different query." return result def main(): parser = argparse.ArgumentParser(description="Demo for using the Shopping Assistant model with the Hugging Face Inference API") parser.add_argument("--text", type=str, required=True, help="Text to classify") parser.add_argument("--token", type=str, help="Hugging Face API token") parser.add_argument("--model-id", type=str, default="selvaonline/shopping-assistant", help="Hugging Face model ID") args = parser.parse_args() # Query the model results = query_model(args.text, args.token, args.model_id) # Process and print the results print(process_results(results, args.text)) if __name__ == "__main__": main()