#!/usr/bin/env python3 """ Gradio demo for the Shopping Assistant model """ import gradio as gr import requests import numpy as np import argparse def query_model(text, api_token=None, model_id="selvaonline/shopping-assistant"): """ Query the model using the Hugging Face Inference API """ api_url = f"https://api-inference.huggingface.co/models/{model_id}" headers = {} if api_token: headers["Authorization"] = f"Bearer {api_token}" payload = { "inputs": text, "options": { "wait_for_model": True } } response = requests.post(api_url, headers=headers, json=payload) if response.status_code == 200: return response.json() else: print(f"Error: {response.status_code}") print(response.text) return None def process_results(results, text): """ Process the results from the Inference API """ if not results or not isinstance(results, list) or len(results) == 0: return f"No results found for '{text}'" # The API returns logits, we need to convert them to probabilities # Apply sigmoid to convert logits to probabilities probabilities = 1 / (1 + np.exp(-np.array(results[0]))) # Define the categories (should match the model's categories) categories = ["electronics", "clothing", "home", "kitchen", "toys", "other"] # Get the top categories top_categories = [] for i, score in enumerate(probabilities): if score > 0.5: # Threshold for multi-label classification top_categories.append((categories[i], float(score))) # Sort by score top_categories.sort(key=lambda x: x[1], reverse=True) # Format the results if top_categories: result = f"Top categories for '{text}':\n\n" for category, score in top_categories: result += f"- {category}: {score:.4f}\n" result += f"\nBased on your query, I would recommend looking for deals in the **{top_categories[0][0]}** category." else: result = f"No categories found for '{text}'. Please try a different query." return result def classify_query(query, api_token=None, model_id="selvaonline/shopping-assistant"): """ Classify a shopping query using the model """ results = query_model(query, api_token, model_id) return process_results(results, query) def create_gradio_interface(api_token=None, model_id="selvaonline/shopping-assistant"): """ Create a Gradio interface for the Shopping Assistant model """ # Define the interface demo = gr.Interface( fn=lambda query: classify_query(query, api_token, model_id), inputs=gr.Textbox( lines=2, placeholder="Enter your shopping query here...", label="Shopping Query" ), outputs=gr.Markdown(label="Results"), title="Shopping Assistant", description=""" This demo shows how to use the Shopping Assistant model to classify shopping queries into categories. Enter a shopping query below to see which categories it belongs to. Examples: - "I'm looking for headphones" - "Do you have any kitchen appliance deals?" - "Show me the best laptop deals" - "I need a new smart TV" """, examples=[ ["I'm looking for headphones"], ["Do you have any kitchen appliance deals?"], ["Show me the best laptop deals"], ["I need a new smart TV"] ], theme=gr.themes.Soft() ) return demo def main(): parser = argparse.ArgumentParser(description="Gradio demo for the Shopping Assistant model") parser.add_argument("--token", type=str, help="Hugging Face API token") parser.add_argument("--model-id", type=str, default="selvaonline/shopping-assistant", help="Hugging Face model ID") parser.add_argument("--share", action="store_true", help="Create a public link") args = parser.parse_args() print(f"Starting Gradio demo for model {args.model_id}") demo = create_gradio_interface(args.token, args.model_id) demo.launch(share=args.share) if __name__ == "__main__": main()