Add model cards, re-export model
Browse files- README.md +220 -0
- config.json +1 -4
- tf_model.h5 +1 -1
README.md
CHANGED
|
@@ -1,3 +1,223 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
language:
|
| 3 |
+
- af
|
| 4 |
+
- am
|
| 5 |
+
- ar
|
| 6 |
+
- as
|
| 7 |
+
- az
|
| 8 |
+
- be
|
| 9 |
+
- bg
|
| 10 |
+
- bn
|
| 11 |
+
- bo
|
| 12 |
+
- bs
|
| 13 |
+
- ca
|
| 14 |
+
- ceb
|
| 15 |
+
- co
|
| 16 |
+
- cs
|
| 17 |
+
- cy
|
| 18 |
+
- da
|
| 19 |
+
- de
|
| 20 |
+
- el
|
| 21 |
+
- en
|
| 22 |
+
- eo
|
| 23 |
+
- es
|
| 24 |
+
- et
|
| 25 |
+
- eu
|
| 26 |
+
- fa
|
| 27 |
+
- fi
|
| 28 |
+
- fr
|
| 29 |
+
- fy
|
| 30 |
+
- ga
|
| 31 |
+
- gd
|
| 32 |
+
- gl
|
| 33 |
+
- gu
|
| 34 |
+
- ha
|
| 35 |
+
- haw
|
| 36 |
+
- he
|
| 37 |
+
- hi
|
| 38 |
+
- hmn
|
| 39 |
+
- hr
|
| 40 |
+
- ht
|
| 41 |
+
- hu
|
| 42 |
+
- hy
|
| 43 |
+
- id
|
| 44 |
+
- ig
|
| 45 |
+
- is
|
| 46 |
+
- it
|
| 47 |
+
- ja
|
| 48 |
+
- jv
|
| 49 |
+
- ka
|
| 50 |
+
- kk
|
| 51 |
+
- km
|
| 52 |
+
- kn
|
| 53 |
+
- ko
|
| 54 |
+
- ku
|
| 55 |
+
- ky
|
| 56 |
+
- la
|
| 57 |
+
- lb
|
| 58 |
+
- lo
|
| 59 |
+
- lt
|
| 60 |
+
- lv
|
| 61 |
+
- mg
|
| 62 |
+
- mi
|
| 63 |
+
- mk
|
| 64 |
+
- ml
|
| 65 |
+
- mn
|
| 66 |
+
- mr
|
| 67 |
+
- ms
|
| 68 |
+
- mt
|
| 69 |
+
- my
|
| 70 |
+
- ne
|
| 71 |
+
- nl
|
| 72 |
+
- no
|
| 73 |
+
- ny
|
| 74 |
+
- or
|
| 75 |
+
- pa
|
| 76 |
+
- pl
|
| 77 |
+
- pt
|
| 78 |
+
- ro
|
| 79 |
+
- ru
|
| 80 |
+
- rw
|
| 81 |
+
- si
|
| 82 |
+
- sk
|
| 83 |
+
- sl
|
| 84 |
+
- sm
|
| 85 |
+
- sn
|
| 86 |
+
- so
|
| 87 |
+
- sq
|
| 88 |
+
- sr
|
| 89 |
+
- st
|
| 90 |
+
- su
|
| 91 |
+
- sv
|
| 92 |
+
- sw
|
| 93 |
+
- ta
|
| 94 |
+
- te
|
| 95 |
+
- tg
|
| 96 |
+
- th
|
| 97 |
+
- tk
|
| 98 |
+
- tl
|
| 99 |
+
- tr
|
| 100 |
+
- tt
|
| 101 |
+
- ug
|
| 102 |
+
- uk
|
| 103 |
+
- ur
|
| 104 |
+
- uz
|
| 105 |
+
- vi
|
| 106 |
+
- wo
|
| 107 |
+
- xh
|
| 108 |
+
- yi
|
| 109 |
+
- yo
|
| 110 |
+
- zh
|
| 111 |
+
- zu
|
| 112 |
+
tags:
|
| 113 |
+
- bert
|
| 114 |
+
- sentence_embedding
|
| 115 |
+
- multilingual
|
| 116 |
+
- google
|
| 117 |
+
- sentence-similarity
|
| 118 |
+
- lealla
|
| 119 |
+
- labse
|
| 120 |
license: apache-2.0
|
| 121 |
+
datasets:
|
| 122 |
+
- CommonCrawl
|
| 123 |
+
- Wikipedia
|
| 124 |
---
|
| 125 |
+
|
| 126 |
+
# LEALLA-base
|
| 127 |
+
|
| 128 |
+
## Model description
|
| 129 |
+
|
| 130 |
+
LEALLA is a collection of lightweight language-agnostic sentence embedding models supporting 109 languages, distilled from [LaBSE](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html). The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.
|
| 131 |
+
|
| 132 |
+
- Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LEALLA-base).
|
| 133 |
+
- Paper: [arXiv](https://arxiv.org/abs/2302.08387).
|
| 134 |
+
- Original model: [TensorFlow Hub](https://tfhub.dev/google/LEALLA/LEALLA-base/1).
|
| 135 |
+
- Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt).
|
| 136 |
+
|
| 137 |
+
This is migrated from the v1 model on the TF Hub. The embeddings produced by both the versions of the model are [equivalent](https://github.com/setu4993/convert-labse-tf-pt/blob/c0d4fbce789b0709a9664464f032d2e9f5368a86/tests/test_conversion_lealla.py#L31). Though, for some of the languages (like Japanese), the LEALLA models appear to require higher tolerances when comparing embeddings and similarities.
|
| 138 |
+
|
| 139 |
+
## Usage
|
| 140 |
+
|
| 141 |
+
Using the model:
|
| 142 |
+
|
| 143 |
+
```python
|
| 144 |
+
import torch
|
| 145 |
+
from transformers import BertModel, BertTokenizerFast
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
tokenizer = BertTokenizerFast.from_pretrained("setu4993/LEALLA-base")
|
| 149 |
+
model = BertModel.from_pretrained("setu4993/LEALLA-base")
|
| 150 |
+
model = model.eval()
|
| 151 |
+
|
| 152 |
+
english_sentences = [
|
| 153 |
+
"dog",
|
| 154 |
+
"Puppies are nice.",
|
| 155 |
+
"I enjoy taking long walks along the beach with my dog.",
|
| 156 |
+
]
|
| 157 |
+
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
|
| 158 |
+
|
| 159 |
+
with torch.no_grad():
|
| 160 |
+
english_outputs = model(**english_inputs)
|
| 161 |
+
```
|
| 162 |
+
|
| 163 |
+
To get the sentence embeddings, use the pooler output:
|
| 164 |
+
|
| 165 |
+
```python
|
| 166 |
+
english_embeddings = english_outputs.pooler_output
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
Output for other languages:
|
| 170 |
+
|
| 171 |
+
```python
|
| 172 |
+
italian_sentences = [
|
| 173 |
+
"cane",
|
| 174 |
+
"I cuccioli sono carini.",
|
| 175 |
+
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
|
| 176 |
+
]
|
| 177 |
+
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
|
| 178 |
+
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
|
| 179 |
+
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)
|
| 180 |
+
|
| 181 |
+
with torch.no_grad():
|
| 182 |
+
italian_outputs = model(**italian_inputs)
|
| 183 |
+
japanese_outputs = model(**japanese_inputs)
|
| 184 |
+
|
| 185 |
+
italian_embeddings = italian_outputs.pooler_output
|
| 186 |
+
japanese_embeddings = japanese_outputs.pooler_output
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
|
| 190 |
+
|
| 191 |
+
```python
|
| 192 |
+
import torch.nn.functional as F
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def similarity(embeddings_1, embeddings_2):
|
| 196 |
+
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
|
| 197 |
+
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
|
| 198 |
+
return torch.matmul(
|
| 199 |
+
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
print(similarity(english_embeddings, italian_embeddings))
|
| 204 |
+
print(similarity(english_embeddings, japanese_embeddings))
|
| 205 |
+
print(similarity(italian_embeddings, japanese_embeddings))
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
## Details
|
| 209 |
+
|
| 210 |
+
Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2302.08387).
|
| 211 |
+
|
| 212 |
+
### BibTeX entry and citation info
|
| 213 |
+
|
| 214 |
+
```bibtex
|
| 215 |
+
@misc{mao2023lealla,
|
| 216 |
+
title={LEALLA: Learning Lightweight Language-agnostic Sentence Embeddings with Knowledge Distillation},
|
| 217 |
+
author={Zhuoyuan Mao and Tetsuji Nakagawa},
|
| 218 |
+
year={2023},
|
| 219 |
+
eprint={2302.08387},
|
| 220 |
+
archivePrefix={arXiv},
|
| 221 |
+
primaryClass={cs.CL}
|
| 222 |
+
}
|
| 223 |
+
```
|
config.json
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"
|
| 3 |
-
"architectures": [
|
| 4 |
-
"BertModel"
|
| 5 |
-
],
|
| 6 |
"attention_probs_dropout_prob": 0.1,
|
| 7 |
"classifier_dropout": null,
|
| 8 |
"gradient_checkpointing": false,
|
|
|
|
| 1 |
{
|
| 2 |
+
"architectures": ["BertModel"],
|
|
|
|
|
|
|
|
|
|
| 3 |
"attention_probs_dropout_prob": 0.1,
|
| 4 |
"classifier_dropout": null,
|
| 5 |
"gradient_checkpointing": false,
|
tf_model.h5
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 428702448
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c295cd806afc9516e4f2a99192e1a0437d17163f4a82f05107ac7a5e7f91a882
|
| 3 |
size 428702448
|