--- license: mit language: - en --- # ๐Ÿชœ LADDER: Language-Driven Slice Discovery and Error Rectification in Vision Classifiers [![Project](https://img.shields.io/badge/Project-%23dfb317)](https://shantanu-ai.github.io/projects/ACL-2025-Ladder/index.html) [![Paper](https://img.shields.io/badge/Paper-ACL%202025-%23dfb317)](https://aclanthology.org/2025.findings-acl.1177/) [![Code](https://img.shields.io/badge/GitHub-batmanlab%2FLADDER-%2312100e)](https://github.com/batmanlab/Ladder) [![Model](https://img.shields.io/badge/HuggingFace-Pretrained--Checkpoints-blue)](https://huggingface.co/shawn24/Ladder/tree/main) --- ## ๐Ÿ“Œ Summary **LADDER** is a general framework that enables vision classifiers to automatically discover subpopulations (or "slices") of data where the model is underperforming โ€” without requiring group annotations. It leverages **vision-language representations** and the **reasoning capabilities of large language models (LLMs)** to detect and rectify bias-inducing features in both natural and medical imaging domains. --- ## ๐Ÿง  Architecture & Components - ๐Ÿ” **Slice Discovery** using: - CLIP, Mammo-CLIP, and CXR-CLIP features - BLIP and GPT-4o-generated captions - ๐Ÿง  **Hypothesis Generation** using: - GPT-4o, Claude, Gemini, LLaMA - โœ… **Bias Mitigation** via reweighting & pseudo-labeling --- ## ๐Ÿ“Š Datasets Used - **Natural Images**: Waterbirds, CelebA, MetaShift - **Medical Images**: NIH ChestX-ray, RSNA Mammograms, VinDr Mammograms --- ## ๐Ÿ“ฆ Files Included | File | Description | |------|-------------| | `model.pt` | Pretrained model checkpoint | | `feature_cache.pkl` | Cached representations (CLIP/Mammo-CLIP/CXR-CLIP) | | `metadata.csv` | Metadata with discovered slice labels | | `caption_blip.json` | BLIP-generated captions | | `caption_gpt4o.json` | GPT-4o-generated captions | | `predictions.json` | Model predictions on test set | --- ## ๐Ÿงช Benchmarks LADDER outperforms traditional slice discovery methods (Domino, FACTS) across 6 datasets and >200 classifiers. It is especially effective in: - Discovering hidden biases without explicit attribute labels - Reasoning about non-visual factors (e.g., preprocessing artifacts) - Operating without human-written captions --- ## ๐Ÿ“œ Citation ```bibtex @article{ghosh2024ladder, title={LADDER: Language Driven Slice Discovery and Error Rectification}, author={Ghosh, Shantanu and Syed, Rayan and Wang, Chenyu and Poynton, Clare B and Visweswaran, Shyam and Batmanghelich, Kayhan}, journal={arXiv preprint arXiv:2408.07832}, year={2024} } ``` --- ## ๐Ÿค Acknowledgements Boston University, Stanford University, BUMC, and the University of Pittsburgh.