Upload flamingo_pytorch.py
Browse files- flamingo_pytorch.py +220 -0
flamingo_pytorch.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn, einsum
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from einops import rearrange, repeat
|
| 6 |
+
from einops_exts import rearrange_many, repeat_many
|
| 7 |
+
import pdb
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def exists(val):
|
| 11 |
+
return val is not None
|
| 12 |
+
|
| 13 |
+
def FeedForward(dim, mult = 4):
|
| 14 |
+
inner_dim = int(dim * mult)
|
| 15 |
+
return nn.Sequential(
|
| 16 |
+
nn.LayerNorm(dim),
|
| 17 |
+
nn.Linear(dim, inner_dim, bias = False),
|
| 18 |
+
nn.GELU(),
|
| 19 |
+
nn.Linear(inner_dim, dim, bias = False)
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
class PerceiverAttention(nn.Module):
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
*,
|
| 26 |
+
dim,
|
| 27 |
+
dim_head = 64,
|
| 28 |
+
heads = 8
|
| 29 |
+
):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.scale = dim_head ** -0.5
|
| 32 |
+
self.heads = heads
|
| 33 |
+
inner_dim = dim_head * heads
|
| 34 |
+
|
| 35 |
+
self.norm_media = nn.LayerNorm(dim)
|
| 36 |
+
self.norm_latents = nn.LayerNorm(dim)
|
| 37 |
+
|
| 38 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 39 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
| 40 |
+
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
| 41 |
+
|
| 42 |
+
def forward(self, x, latents):
|
| 43 |
+
"""
|
| 44 |
+
einstein notation
|
| 45 |
+
b - batch
|
| 46 |
+
t - time
|
| 47 |
+
n - sequence
|
| 48 |
+
d - dimension
|
| 49 |
+
"""
|
| 50 |
+
x = self.norm_media(x)
|
| 51 |
+
latents = self.norm_latents(latents)
|
| 52 |
+
|
| 53 |
+
b, m, h = *x.shape[:2], self.heads
|
| 54 |
+
|
| 55 |
+
q = self.to_q(latents)
|
| 56 |
+
|
| 57 |
+
# the paper differs from Perceiver in which they also concat the key / values derived from the latents to be attended to
|
| 58 |
+
kv_input = torch.cat((x, latents), dim = -2)
|
| 59 |
+
k, v = self.to_kv(kv_input).chunk(2, dim = -1)
|
| 60 |
+
|
| 61 |
+
q, k, v = rearrange_many((q, k, v), 'b t n (h d) -> b h t n d', h = h)
|
| 62 |
+
|
| 63 |
+
q = q * self.scale
|
| 64 |
+
|
| 65 |
+
# attention
|
| 66 |
+
|
| 67 |
+
sim = einsum('... i d, ... j d -> ... i j', q, k)
|
| 68 |
+
|
| 69 |
+
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
| 70 |
+
attn = sim.softmax(dim = -1)
|
| 71 |
+
|
| 72 |
+
out = einsum('... i j, ... j d -> ... i d', attn, v)
|
| 73 |
+
out = rearrange(out, 'b h t n d -> b t n (h d)', h = h)
|
| 74 |
+
return self.to_out(out)
|
| 75 |
+
|
| 76 |
+
class PerceiverResampler(nn.Module):
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
*,
|
| 80 |
+
dim,
|
| 81 |
+
depth,
|
| 82 |
+
dim_head = 64,
|
| 83 |
+
heads = 8,
|
| 84 |
+
num_latents = 64,
|
| 85 |
+
num_time_embeds = 4,
|
| 86 |
+
ff_mult = 4,
|
| 87 |
+
inp_dim=None,
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.latents = nn.Parameter(torch.randn(num_latents, dim))
|
| 91 |
+
self.time_pos_emb = nn.Parameter(torch.randn(num_time_embeds, 1, dim))
|
| 92 |
+
if inp_dim is not None:
|
| 93 |
+
self.inp_linear = nn.Linear(inp_dim, dim, bias=False)
|
| 94 |
+
else:
|
| 95 |
+
self.inp_linear = None
|
| 96 |
+
|
| 97 |
+
self.layers = nn.ModuleList([])
|
| 98 |
+
for _ in range(depth):
|
| 99 |
+
self.layers.append(nn.ModuleList([
|
| 100 |
+
PerceiverAttention(dim = dim, dim_head = dim_head, heads = heads),
|
| 101 |
+
FeedForward(dim = dim, mult = ff_mult)
|
| 102 |
+
]))
|
| 103 |
+
|
| 104 |
+
self.norm = nn.LayerNorm(dim)
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
if x.ndim == 3:
|
| 108 |
+
x = rearrange(x, 'b n d -> b 1 n d')
|
| 109 |
+
|
| 110 |
+
if self.inp_linear is not None:
|
| 111 |
+
x = self.inp_linear(x)
|
| 112 |
+
|
| 113 |
+
times = x.shape[1]
|
| 114 |
+
x = x + self.time_pos_emb[:times]
|
| 115 |
+
|
| 116 |
+
latents = repeat(self.latents, 'n d -> b m n d', b = x.shape[0], m = x.shape[1])
|
| 117 |
+
|
| 118 |
+
for attn, ff in self.layers:
|
| 119 |
+
latents = attn(x, latents) + latents
|
| 120 |
+
latents = ff(latents) + latents
|
| 121 |
+
|
| 122 |
+
return self.norm(latents)
|
| 123 |
+
|
| 124 |
+
# gated cross attention
|
| 125 |
+
|
| 126 |
+
class MaskedCrossAttention(nn.Module):
|
| 127 |
+
def __init__(
|
| 128 |
+
self,
|
| 129 |
+
*,
|
| 130 |
+
dim,
|
| 131 |
+
dim_head = 64,
|
| 132 |
+
heads = 8,
|
| 133 |
+
only_attend_immediate_media = True
|
| 134 |
+
):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.scale = dim_head ** -0.5
|
| 137 |
+
self.heads = heads
|
| 138 |
+
inner_dim = dim_head * heads
|
| 139 |
+
|
| 140 |
+
self.norm = nn.LayerNorm(dim)
|
| 141 |
+
|
| 142 |
+
self.to_q = nn.Linear(dim, inner_dim, bias = False)
|
| 143 |
+
self.to_kv = nn.Linear(dim, inner_dim * 2, bias = False)
|
| 144 |
+
self.to_out = nn.Linear(inner_dim, dim, bias = False)
|
| 145 |
+
|
| 146 |
+
# whether for text to only attend to immediate preceding image, or all images
|
| 147 |
+
|
| 148 |
+
self.only_attend_immediate_media = only_attend_immediate_media
|
| 149 |
+
|
| 150 |
+
def forward(
|
| 151 |
+
self,
|
| 152 |
+
x,
|
| 153 |
+
media,
|
| 154 |
+
media_locations = None
|
| 155 |
+
):
|
| 156 |
+
b, t, m = media.shape[:3]
|
| 157 |
+
h = self.heads
|
| 158 |
+
|
| 159 |
+
x = self.norm(x)
|
| 160 |
+
|
| 161 |
+
q = self.to_q(x)
|
| 162 |
+
media = rearrange(media, 'b t n d -> b (t n) d')
|
| 163 |
+
|
| 164 |
+
k, v = self.to_kv(media).chunk(2, dim = -1)
|
| 165 |
+
q, k, v = rearrange_many((q, k, v), 'b n (h d) -> b h n d', h = h)
|
| 166 |
+
|
| 167 |
+
q = q * self.scale
|
| 168 |
+
|
| 169 |
+
sim = einsum('... i d, ... j d -> ... i j', q, k)
|
| 170 |
+
|
| 171 |
+
if exists(media_locations):
|
| 172 |
+
text_time = media_locations.cumsum(dim = -1) # at each boolean of True, increment the time counter (relative to media time)
|
| 173 |
+
media_time = torch.arange(t, device = x.device) + 1
|
| 174 |
+
|
| 175 |
+
# text time must equal media time if only attending to most immediate image
|
| 176 |
+
# otherwise, as long as text time is greater than media time (if attending to all previous images / media)
|
| 177 |
+
mask_op = torch.eq if self.only_attend_immediate_media else torch.ge
|
| 178 |
+
|
| 179 |
+
text_to_media_mask = mask_op(rearrange(text_time, 'b i -> b 1 i 1'), repeat(media_time, 'j -> 1 1 1 (j m)', m = m))
|
| 180 |
+
sim = sim.masked_fill(~text_to_media_mask, -torch.finfo(sim.dtype).max)
|
| 181 |
+
|
| 182 |
+
sim = sim - sim.amax(dim = -1, keepdim = True).detach()
|
| 183 |
+
attn = sim.softmax(dim = -1)
|
| 184 |
+
|
| 185 |
+
if exists(media_locations) and self.only_attend_immediate_media:
|
| 186 |
+
# any text without a preceding media needs to have attention zeroed out
|
| 187 |
+
text_without_media_mask = text_time == 0
|
| 188 |
+
text_without_media_mask = rearrange(text_without_media_mask, 'b i -> b 1 i 1')
|
| 189 |
+
attn.masked_fill(text_without_media_mask, 0.)
|
| 190 |
+
|
| 191 |
+
out = einsum('... i j, ... j d -> ... i d', attn, v)
|
| 192 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
| 193 |
+
return self.to_out(out)
|
| 194 |
+
|
| 195 |
+
class GatedCrossAttentionBlock(nn.Module):
|
| 196 |
+
def __init__(
|
| 197 |
+
self,
|
| 198 |
+
*,
|
| 199 |
+
dim,
|
| 200 |
+
dim_head = 64,
|
| 201 |
+
heads = 8,
|
| 202 |
+
ff_mult = 4,
|
| 203 |
+
only_attend_immediate_media = True
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
self.attn = MaskedCrossAttention(dim = dim, dim_head = dim_head, heads = heads, only_attend_immediate_media = only_attend_immediate_media)
|
| 207 |
+
self.attn_gate = nn.Parameter(torch.tensor([0.]))
|
| 208 |
+
|
| 209 |
+
self.ff = FeedForward(dim, mult = ff_mult)
|
| 210 |
+
self.ff_gate = nn.Parameter(torch.tensor([0.]))
|
| 211 |
+
|
| 212 |
+
def forward(
|
| 213 |
+
self,
|
| 214 |
+
x,
|
| 215 |
+
media, # media tensor, encoded by perceiver resample - (batch, time, latents, dim)
|
| 216 |
+
media_locations = None # boolean tensor indicating positions of media - (batch, sequence)
|
| 217 |
+
):
|
| 218 |
+
x = self.attn(x, media, media_locations = media_locations) * self.attn_gate.tanh() + x
|
| 219 |
+
x = self.ff(x) * self.ff_gate.tanh() + x
|
| 220 |
+
return x
|