Commit
·
86ae316
1
Parent(s):
c834e50
Upload modeling_t5seq.py with huggingface_hub
Browse files- modeling_t5seq.py +40 -107
modeling_t5seq.py
CHANGED
|
@@ -7,28 +7,19 @@ from torch import nn
|
|
| 7 |
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 8 |
|
| 9 |
from transformers import AutoModelForSequenceClassification
|
| 10 |
-
from transformers.modeling_outputs import
|
| 11 |
-
BaseModelOutput,
|
| 12 |
-
Seq2SeqSequenceClassifierOutput,
|
| 13 |
-
)
|
| 14 |
from transformers.models.t5.configuration_t5 import T5Config
|
| 15 |
-
from transformers.models.t5.modeling_t5 import T5PreTrainedModel,
|
| 16 |
|
| 17 |
|
| 18 |
class T5ClassificationHead(nn.Module):
|
| 19 |
"""Head for sentence-level classification tasks."""
|
| 20 |
|
| 21 |
-
def __init__(
|
| 22 |
-
self,
|
| 23 |
-
input_dim: int,
|
| 24 |
-
inner_dim: int,
|
| 25 |
-
num_classes: int,
|
| 26 |
-
pooler_dropout: float,
|
| 27 |
-
):
|
| 28 |
super().__init__()
|
| 29 |
-
self.dense = nn.Linear(
|
| 30 |
-
self.dropout = nn.Dropout(p=
|
| 31 |
-
self.out_proj = nn.Linear(
|
| 32 |
|
| 33 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 34 |
hidden_states = self.dropout(hidden_states)
|
|
@@ -45,50 +36,14 @@ class T5ForSequenceClassification(T5PreTrainedModel):
|
|
| 45 |
|
| 46 |
def __init__(self, config: T5Config):
|
| 47 |
super().__init__(config)
|
| 48 |
-
self.
|
| 49 |
-
|
| 50 |
-
self.shared = nn.Embedding(config.vocab_size, config.d_model)
|
| 51 |
-
|
| 52 |
-
encoder_config = copy.deepcopy(config)
|
| 53 |
-
encoder_config.is_decoder = False
|
| 54 |
-
encoder_config.use_cache = False
|
| 55 |
-
encoder_config.is_encoder_decoder = False
|
| 56 |
-
self.encoder = T5Stack(encoder_config, self.shared)
|
| 57 |
-
|
| 58 |
-
decoder_config = copy.deepcopy(config)
|
| 59 |
-
decoder_config.is_decoder = True
|
| 60 |
-
decoder_config.is_encoder_decoder = False
|
| 61 |
-
decoder_config.num_layers = config.num_decoder_layers
|
| 62 |
-
self.decoder = T5Stack(decoder_config, self.shared)
|
| 63 |
-
|
| 64 |
-
self.num_labels = config.num_labels
|
| 65 |
-
|
| 66 |
-
self.classification_head = T5ClassificationHead(
|
| 67 |
-
config.d_model,
|
| 68 |
-
config.d_model,
|
| 69 |
-
config.num_labels,
|
| 70 |
-
config.classifier_dropout,
|
| 71 |
-
)
|
| 72 |
|
| 73 |
# Initialize weights and apply final processing
|
| 74 |
self.post_init()
|
| 75 |
|
| 76 |
self.model_parallel = False
|
| 77 |
|
| 78 |
-
def get_input_embeddings(self):
|
| 79 |
-
return self.shared
|
| 80 |
-
|
| 81 |
-
def set_input_embeddings(self, new_embeddings):
|
| 82 |
-
self.shared = new_embeddings
|
| 83 |
-
self.encoder.set_input_embeddings(new_embeddings)
|
| 84 |
-
self.decoder.set_input_embeddings(new_embeddings)
|
| 85 |
-
|
| 86 |
-
def get_encoder(self):
|
| 87 |
-
return self.encoder
|
| 88 |
-
|
| 89 |
-
def get_decoder(self):
|
| 90 |
-
return self.decoder
|
| 91 |
-
|
| 92 |
def forward(
|
| 93 |
self,
|
| 94 |
input_ids: torch.LongTensor = None,
|
|
@@ -114,13 +69,16 @@ class T5ForSequenceClassification(T5PreTrainedModel):
|
|
| 114 |
Returns:
|
| 115 |
"""
|
| 116 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 117 |
-
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 118 |
if labels is not None:
|
| 119 |
use_cache = False
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
| 125 |
if input_ids is None:
|
| 126 |
raise ValueError(
|
|
@@ -130,57 +88,30 @@ class T5ForSequenceClassification(T5PreTrainedModel):
|
|
| 130 |
)
|
| 131 |
decoder_input_ids = self._shift_right(input_ids)
|
| 132 |
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
if encoder_outputs is None:
|
| 141 |
-
encoder_outputs = self.encoder(
|
| 142 |
-
input_ids=input_ids,
|
| 143 |
-
attention_mask=attention_mask,
|
| 144 |
-
inputs_embeds=inputs_embeds,
|
| 145 |
-
head_mask=head_mask,
|
| 146 |
-
output_attentions=output_attentions,
|
| 147 |
-
output_hidden_states=output_hidden_states,
|
| 148 |
-
return_dict=return_dict,
|
| 149 |
-
)
|
| 150 |
-
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
| 151 |
-
encoder_outputs = BaseModelOutput(
|
| 152 |
-
last_hidden_state=encoder_outputs[0],
|
| 153 |
-
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
| 154 |
-
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
| 155 |
-
)
|
| 156 |
-
|
| 157 |
-
hidden_states = encoder_outputs[0]
|
| 158 |
-
|
| 159 |
-
# Decode
|
| 160 |
-
decoder_outputs = self.decoder(
|
| 161 |
-
input_ids=decoder_input_ids,
|
| 162 |
-
attention_mask=decoder_attention_mask,
|
| 163 |
-
inputs_embeds=decoder_inputs_embeds,
|
| 164 |
-
past_key_values=None,
|
| 165 |
-
encoder_hidden_states=hidden_states,
|
| 166 |
-
encoder_attention_mask=attention_mask,
|
| 167 |
-
head_mask=decoder_head_mask,
|
| 168 |
cross_attn_head_mask=cross_attn_head_mask,
|
|
|
|
|
|
|
|
|
|
| 169 |
use_cache=use_cache,
|
| 170 |
output_attentions=output_attentions,
|
| 171 |
output_hidden_states=output_hidden_states,
|
| 172 |
return_dict=return_dict,
|
| 173 |
)
|
| 174 |
-
|
| 175 |
-
sequence_output = decoder_outputs[0]
|
| 176 |
|
| 177 |
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
|
| 178 |
|
| 179 |
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
| 180 |
raise ValueError("All examples must have the same number of <eos> tokens.")
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
)[:, -1, :]
|
| 184 |
logits = self.classification_head(sentence_representation)
|
| 185 |
|
| 186 |
loss = None
|
|
@@ -207,21 +138,23 @@ class T5ForSequenceClassification(T5PreTrainedModel):
|
|
| 207 |
loss_fct = BCEWithLogitsLoss()
|
| 208 |
loss = loss_fct(logits, labels)
|
| 209 |
if not return_dict:
|
| 210 |
-
output = (logits,) +
|
| 211 |
return ((loss,) + output) if loss is not None else output
|
| 212 |
|
| 213 |
return Seq2SeqSequenceClassifierOutput(
|
| 214 |
loss=loss,
|
| 215 |
logits=logits,
|
| 216 |
-
past_key_values=
|
| 217 |
-
decoder_hidden_states=
|
| 218 |
-
decoder_attentions=
|
| 219 |
-
cross_attentions=
|
| 220 |
-
encoder_last_hidden_state=
|
| 221 |
-
encoder_hidden_states=
|
| 222 |
-
encoder_attentions=
|
| 223 |
)
|
| 224 |
|
| 225 |
-
|
| 226 |
-
AutoModelForSequenceClassification.register(T5Config, T5ForSequenceClassification)
|
|
|
|
|
|
|
| 227 |
|
|
|
|
| 7 |
from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss
|
| 8 |
|
| 9 |
from transformers import AutoModelForSequenceClassification
|
| 10 |
+
from transformers.modeling_outputs import Seq2SeqSequenceClassifierOutput
|
|
|
|
|
|
|
|
|
|
| 11 |
from transformers.models.t5.configuration_t5 import T5Config
|
| 12 |
+
from transformers.models.t5.modeling_t5 import T5PreTrainedModel, T5Model
|
| 13 |
|
| 14 |
|
| 15 |
class T5ClassificationHead(nn.Module):
|
| 16 |
"""Head for sentence-level classification tasks."""
|
| 17 |
|
| 18 |
+
def __init__(self, config: T5Config):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
super().__init__()
|
| 20 |
+
self.dense = nn.Linear(config.d_model, config.d_model)
|
| 21 |
+
self.dropout = nn.Dropout(p=config.classifier_dropout)
|
| 22 |
+
self.out_proj = nn.Linear(config.d_model, config.num_labels)
|
| 23 |
|
| 24 |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 25 |
hidden_states = self.dropout(hidden_states)
|
|
|
|
| 36 |
|
| 37 |
def __init__(self, config: T5Config):
|
| 38 |
super().__init__(config)
|
| 39 |
+
self.transformer = T5Model(config)
|
| 40 |
+
self.classification_head = T5ClassificationHead(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Initialize weights and apply final processing
|
| 43 |
self.post_init()
|
| 44 |
|
| 45 |
self.model_parallel = False
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def forward(
|
| 48 |
self,
|
| 49 |
input_ids: torch.LongTensor = None,
|
|
|
|
| 69 |
Returns:
|
| 70 |
"""
|
| 71 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
| 72 |
if labels is not None:
|
| 73 |
use_cache = False
|
| 74 |
|
| 75 |
+
if input_ids is None and inputs_embeds is not None:
|
| 76 |
+
raise NotImplementedError(
|
| 77 |
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
|
| 81 |
+
# decoder_input_ids from input_ids if no decoder_input_ids are provided
|
| 82 |
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
| 83 |
if input_ids is None:
|
| 84 |
raise ValueError(
|
|
|
|
| 88 |
)
|
| 89 |
decoder_input_ids = self._shift_right(input_ids)
|
| 90 |
|
| 91 |
+
outputs = self.transformer(
|
| 92 |
+
input_ids,
|
| 93 |
+
attention_mask=attention_mask,
|
| 94 |
+
decoder_input_ids=decoder_input_ids,
|
| 95 |
+
decoder_attention_mask=decoder_attention_mask,
|
| 96 |
+
head_mask=head_mask,
|
| 97 |
+
decoder_head_mask=decoder_head_mask,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
cross_attn_head_mask=cross_attn_head_mask,
|
| 99 |
+
encoder_outputs=encoder_outputs,
|
| 100 |
+
inputs_embeds=inputs_embeds,
|
| 101 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
| 102 |
use_cache=use_cache,
|
| 103 |
output_attentions=output_attentions,
|
| 104 |
output_hidden_states=output_hidden_states,
|
| 105 |
return_dict=return_dict,
|
| 106 |
)
|
| 107 |
+
sequence_output = outputs[0]
|
|
|
|
| 108 |
|
| 109 |
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
|
| 110 |
|
| 111 |
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
| 112 |
raise ValueError("All examples must have the same number of <eos> tokens.")
|
| 113 |
+
batch_size, _, hidden_size = sequence_output.shape
|
| 114 |
+
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
|
|
|
|
| 115 |
logits = self.classification_head(sentence_representation)
|
| 116 |
|
| 117 |
loss = None
|
|
|
|
| 138 |
loss_fct = BCEWithLogitsLoss()
|
| 139 |
loss = loss_fct(logits, labels)
|
| 140 |
if not return_dict:
|
| 141 |
+
output = (logits,) + outputs[1:]
|
| 142 |
return ((loss,) + output) if loss is not None else output
|
| 143 |
|
| 144 |
return Seq2SeqSequenceClassifierOutput(
|
| 145 |
loss=loss,
|
| 146 |
logits=logits,
|
| 147 |
+
past_key_values=outputs.past_key_values,
|
| 148 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
| 149 |
+
decoder_attentions=outputs.decoder_attentions,
|
| 150 |
+
cross_attentions=outputs.cross_attentions,
|
| 151 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
| 152 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
| 153 |
+
encoder_attentions=outputs.encoder_attentions,
|
| 154 |
)
|
| 155 |
|
| 156 |
+
try:
|
| 157 |
+
AutoModelForSequenceClassification.register(T5Config, T5ForSequenceClassification)
|
| 158 |
+
except ValueError:
|
| 159 |
+
pass
|
| 160 |
|