File size: 15,185 Bytes
1d99449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
---
license: apache-2.0
license_link: https://huggingface.co/skt/A.X-3.1/blob/main/LICENSE
language:
- en
- ko
pipeline_tag: text-generation
library_name: transformers
model_id: skt/A.X-3.1
developers: SKT AI Model Lab
model-index:
- name: A.X-3.1
results:
- task:
type: generate_until
name: mmlu
dataset:
name: mmlu (chat CoT)
type: hails/mmlu_no_train
metrics:
- type: exact_match
value: 75.1
name: exact_match
- task:
type: generate_until
name: kmmlu
dataset:
name: kmmlu (chat CoT)
type: HAERAE-HUB/KMMLU
metrics:
- type: exact_match
value: 69.2
name: exact_match
---
# A.X 3.1
<div align="center">
<img src="./assets/A.X_from_scratch_logo_ko_4x3.png" alt="A.X Logo" width="300"/>
</div>
<p align="center"> <a href="https://huggingface.co/collections/skt/ax-3-686b288b3b05e1234f3f4c73">🤗 Models</a> | <a href="https://github.com/SKT-AI/A.X-3">🖥️ Github</a> </p>
## A.X 3.1 Highlights
SK Telecom released **A.X 3.1** (pronounced "A dot X"), a large language model (LLM) optimized for Korean-language understanding and enterprise deployment, on July 24, 2025.
This sovereign AI model was developed entirely in-house by SKT, encompassing model architecture, data curation, and training, all carried out on SKT’s proprietary supercomputing infrastructure, TITAN.
The model was trained from scratch on a high-quality multilingual corpus comprising **2.1 trillion tokens**, with a primary focus on the Korean language.
- **Authentic Korean Sovereign AI**: A.X 3.1 was trained on a high-quality multilingual dataset—fully curated in-house—using SKT’s proprietary GPU infrastructure.
- **Highly Efficient Multilingual LLM**: A.X 3.1 demonstrates superior performance among Korean LLMs, despite its relatively compact training size of 2.1 trillion tokens.
- **Superior Korean Proficiency**: A.X 3.1 achieved a score of **69.2** on the [KMMLU](https://huggingface.co/datasets/HAERAE-HUB/KMMLU): the leading benchmark for Korean-language evaluation and a Korean-specific adaptation of MMLU, outperforming other Korean-specified models.
- **Deep Korean Understanding**: A.X 3.1 obtained **77.4** on the [CLIcK](https://huggingface.co/datasets/EunsuKim/CLIcK): a benchmark for Korean cultural and contextual comprehension, outperforming other open-source models.
- **Efficient Token Usage**: A.X 3.1 requires approximately 33% fewer tokens than GPT-4o to process equivalent Korean inputs, facilitating more cost-effective and computationally efficient inference.
- **Long-Context Handling**: A.X 3.1 supports up to **32,768 tokens** natively, and up to **131,072 tokens** by applying YaRN.
## Core Technologies
A.X 3.1 represents **an efficient sovereign AI model**, developed end-to-end by SKT, encompassing model architecture, data curation, infrastructure deployment, and optimization.
### Model Architecture Specs
<table><thead>
<tr>
<th>Model</th>
<th># Params</th>
<th># Layers</th>
<th># KV-Heads</th>
<th>Hidden Dim</th>
<th>FFN Dim</th>
</tr>
<tr>
<th>A.X 3.1</th>
<th>34B</th>
<th>48</th>
<th>8</th>
<th>8192</th>
<th>21824</th>
</tr>
</thead>
</table>
### High-Quality Data Pipeline & Strategic Mixture
- We collected and curated a training dataset comprising 20 trillion tokens sourced from diverse domains.
- The entire dataset was processed through SKT’s proprietary data pipeline, incorporating synthetic data generation and comprehensive quality filtering.
- For training A.X 3.1, a total of **2.1 trillion tokens** were utilized, comprising a Korean-focused multilingual corpus.
## Benchmark Results
### Model Performance
<table>
<caption style="text-align:left; caption-side:bottom">* self-reported score</caption>
<thead>
<tr>
<th></th>
<th></th>
<th>A.X 3.1</th>
<th>EXAONE-3.5-32B</th>
<th>Kanana-flag-32.5B</th>
<th>Gemma-3-27B</th>
<th>Qwen2.5-32B</th>
</tr></thead>
<tbody>
<tr>
<td rowspan="5">Knowledge</td>
<td>KMMLU</td>
<td>69.73</td>
<td>57.17</td>
<td>64.19*</td>
<td>59.45</td>
<td>61.93</td>
</tr>
<tr>
<td>KMMLU-pro</td>
<td>54.89</td>
<td>45.39</td>
<td>-</td>
<td>50.43</td>
<td>52.34</td>
</tr>
<tr>
<td>KMMLU-redux</td>
<td>62.66</td>
<td>48.32</td>
<td>-</td>
<td>54.85</td>
<td>52.15</td>
</tr>
<tr>
<td>Click (chat CoT)</td>
<td>77.09</td>
<td>69.42</td>
<td>-</td>
<td>71.03</td>
<td>68.17</td>
</tr>
<tr>
<td>MMLU</td>
<td>75.20</td>
<td>77.1</td>
<td>81.08*</td>
<td>82.35</td>
<td>83.4</td>
</tr>
<tr>
<td rowspan="2">General</td>
<td>Ko-MT-bench</td>
<td>83.06</td>
<td>80.19</td>
<td>80.58*</td>
<td>85.5</td>
<td>72.88</td>
</tr>
<tr>
<td>MT-bench</td>
<td>84.19</td>
<td>85.09</td>
<td>83.56*</td>
<td>84.38</td>
<td>87.31</td>
</tr>
<tr>
<td rowspan="2">IF</td>
<td>Ko-IFEval</td>
<td>75.29</td>
<td>68.67</td>
<td>-</td>
<td>74.4</td>
<td>73.24</td>
</tr>
<tr>
<td>IFEval</td>
<td>87.11</td>
<td>82.67</td>
<td>85.6*</td>
<td>82.45</td>
<td>82.27</td>
</tr>
<tr>
<td rowspan="2">Math<br> </td>
<td>HRM8K</td>
<td>45.53</td>
<td>36.3</td>
<td>-</td>
<td>48</td>
<td>41.29</td>
</tr>
<tr>
<td>MATH</td>
<td>75.40</td>
<td>61.64</td>
<td>57.82*</td>
<td>80.72</td>
<td>73.26</td>
</tr>
<tr>
<td rowspan="3">Code<br> <br> </td>
<td>HumanEval+</td>
<td>75.00</td>
<td>77.44</td>
<td>77.44*</td>
<td>78.66</td>
<td>82.32</td>
</tr>
<tr>
<td>MBPP+</td>
<td>70.90</td>
<td>65.87</td>
<td>69.84*</td>
<td>74.07</td>
<td>73.81</td>
</tr>
<tr>
<td>LiveCodeBench</td>
<td>23.34</td>
<td>17.2</td>
<td>-</td>
<td>30.55</td>
<td>26.9</td>
</tr>
</tbody></table>
### Lightweight Model Performance
<table><thead>
<tr>
<th colspan="2">Benchmarks</th>
<th>A.X 3.1 Light</th>
<th>Kanana-1.5-8B</th>
<th>EXAONE-3.5-7.8B</th>
<th>Qwen2.5-7B</th>
<th>Qwen3-8B<br>(w/o reasoning)</th>
</tr></thead>
<tbody>
<tr>
<td rowspan="6">Knowledge</td>
<td>KMMLU</td>
<td>61.70</td>
<td>48.28</td>
<td>53.76</td>
<td>49.56</td>
<td>63.53</td>
</tr>
<tr>
<td>KMMLU-pro</td>
<td>45.54</td>
<td>37.63</td>
<td>40.11</td>
<td>38.87</td>
<td>50.71</td>
</tr>
<tr>
<td>KMMLU-redux</td>
<td>52.34</td>
<td>35.33</td>
<td>42.21</td>
<td>38.58</td>
<td>55.74</td>
</tr>
<tr>
<td>CLIcK</td>
<td>71.22</td>
<td>61.30</td>
<td>64.11</td>
<td>58.30</td>
<td>63.31</td>
</tr>
<tr>
<td>KoBALT</td>
<td>27.43</td>
<td>23.14</td>
<td>21.71</td>
<td>21.57</td>
<td>26.57</td>
</tr>
<tr>
<td>MMLU</td>
<td>66.95</td>
<td>68.82</td>
<td>72.20</td>
<td>75.40</td>
<td>82.89</td>
</tr>
<tr>
<td rowspan="2">General</td>
<td>Ko-MT-Bench</td>
<td>78.56</td>
<td>76.30</td>
<td>81.06</td>
<td>61.31</td>
<td>64.06</td>
</tr>
<tr>
<td>MT-Bench</td>
<td>74.38</td>
<td>77.60</td>
<td>83.50</td>
<td>79.37</td>
<td>65.69</td>
</tr>
<tr>
<td rowspan="2">Instruction<br>Following</td>
<td>Ko-IFEval</td>
<td>70.04</td>
<td>69.96</td>
<td>65.01</td>
<td>60.73</td>
<td>73.39</td>
</tr>
<tr>
<td>IFEval</td>
<td>79.86</td>
<td>80.11</td>
<td>82.61</td>
<td>76.73</td>
<td>85.38</td>
</tr>
<tr>
<td rowspan="2">Math</td>
<td>HRM8K</td>
<td>41.70</td>
<td>30.87</td>
<td>31.88</td>
<td>35.13</td>
<td>52.50</td>
</tr>
<tr>
<td>MATH</td>
<td>70.14</td>
<td>59.28</td>
<td>63.20</td>
<td>65.58</td>
<td>71.48</td>
</tr>
<tr>
<td rowspan="2">Code<br></td>
<td>HumanEval+</td>
<td>73.78</td>
<td>76.83</td>
<td>76.83</td>
<td>74.39</td>
<td>77.44</td>
</tr>
<tr>
<td>MBPP+</td>
<td>61.64</td>
<td>67.99</td>
<td>64.29</td>
<td>68.50</td>
<td>62.17</td>
</tr>
</tbody></table>
## 🚀 Quickstart
### with HuggingFace Transformers
- `transformers>=4.46.0` or the latest version is required to use `skt/A.X-3.1`
```bash
pip install transformers>=4.46.0
```
#### Example Usage
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "skt/A.X-3.1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
messages = [
{"role": "system", "content": "당신은 사용자가 제공하는 영어 문장들을 한국어로 번역하는 AI 전문가입니다."},
{"role": "user", "content": "The first human went into space and orbited the Earth on April 12, 1961."},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=128,
do_sample=False,
)
len_input_prompt = len(input_ids[0])
response = tokenizer.decode(output[0][len_input_prompt:], skip_special_tokens=True)
print(response)
# Output:
# 우주에서 인간이 처음으로 지구 궤도를 돈 날은 1961년 4월 12일입니다.
```
### with vLLM
- `vllm>=v0.6.4.post1` or the latest version is required to use tool-use feature
```bash
pip install vllm>=v0.6.4.post1
# if you don't want to activate tool-use feature, just commenting out below vLLM option
VLLM_OPTION="--enable-auto-tool-choice --tool-call-parser hermes"
vllm serve skt/A.X-3.1 $VLLM_OPTION
```
#### Example Usage
```python
from openai import OpenAI
def call(messages, model):
completion = client.chat.completions.create(
model=model,
messages=messages,
)
print(completion.choices[0].message)
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="api_key"
)
model = "skt/A.X-3.1"
messages = [{"role": "user", "content": "에어컨 여름철 적정 온도는? 한줄로 답변해줘"}]
call(messages, model)
# Output:
# 여름철 에어컨 적정 온도는 24~26도입니다.
messages = [{"role": "user", "content": "What is the appropriate temperature for air conditioning in summer? Respond in a single sentence."}]
call(messages, model)
# Output:
# The appropriate temperature for air conditioning in summer is around 78°F (26°C).
```
#### Examples for tool-use
```python
from openai import OpenAI
def call(messages, model):
completion = client.chat.completions.create(
model=model,
messages=messages,
tools=tools
)
print(completion.choices[0].message)
client = OpenAI(
base_url="http://localhost:8000/v1",
api_key="api_key"
)
model = "skt/A.X-3.1"
calculate_discount = {
"type": "function",
"function": {
"name": "calculate_discount",
"description": "원가격과 할인율(퍼센트 단위)을 입력받아 할인된 가격을계산한다.",
"parameters": {
"type": "object",
"properties": {
"original_price": {
"type": "number",
"description": "상품의 원래 가격"
},
"discount_percentage": {
"type": "number",
"description": "적용할 할인율"
}
},
"required": ["original_price", "discount_percentage"]
}
}
}
get_exchange_rate = {
"type": "function",
"function": {
"name": "get_exchange_rate",
"description": "두 통화 간의 환율을 가져온다.",
"parameters": {
"type": "object",
"properties": {
"base_currency": {
"type": "string",
"description": "The currency to convert from."
},
"target_currency": {
"type": "string",
"description": "The currency to convert to."
}
},
"required": ["base_currency", "target_currency"]
}
}
}
tools = [calculate_discount, get_exchange_rate]
### Slot filling ###
messages = [{"role": "user", "content": "우리가 뭘 사야되는데 원가가 57600원인데 직원할인 받으면 얼마야?"}]
call(messages, model)
# Output:
# ChatCompletionMessage(content='직원 할인율이 몇 퍼센트인지 알려주신다면 할인된 가격을 계산할 수 있습니다. 할인율이 몇 퍼센트인지 알려주실 수 있나요?', role='assistant', tool_calls=[])
### Function calling ###
messages = [
{"role": "user", "content": "우리가 뭘 사야되는데 원가가 57600원인데 직원할인 받으면 얼마야?"},
{"role": "assistant", "content": "직원 할인율이 몇 퍼센트인지 알려주신다면 할인된 가격을 계산할 수 있습니다. 할인율이 몇 퍼센트인지 알려주실 수 있나요?"},
{"role": "user", "content": "15% 할인 받을 수 있어."},
]
call(messages, model)
# Output:
# ChatCompletionMessage(content=None, role='assistant', tool_calls=[ChatCompletionMessageToolCall(id='chatcmpl-tool-cb9e827f752d4725abc94377223b2b0f', function=Function(arguments='{"original_price": 57600, "discount_percentage": 15}', name='calculate_discount'), type='function')])
### Completion ###
messages = [
{"role": "user", "content": "우리가 뭘 사야되는데 원가가 57600원인데 직원할인 받으면 얼마야?"},
{"role": "assistant", "content": "직원 할인율이 몇 퍼센트인지 알려주신다면 할인된 가격을 계산할 수 있습니다. 할인율이 몇 퍼센트인지 알려주실 수 있나요?"},
{"role": "user", "content": "15% 할인 받을 수 있어."},
{"role": "tool", "tool_call_id": "random_id", "name": "calculate_discount", "content": "{\"original_price\": 57600, \"discount_percentage\": 15, \"discounted_price\": 48960.0}"}
]
call(messages, model)
# Output:
# ChatCompletionMessage(content='직원 할인을 받으면 57600원의 상품은 15% 할인을 받아 48960원이 됩니다.', role='assistant', tool_calls=[])
```
### Extend supported token length
The `config.json` file of A.X 3.1 uploaded to HuggingFace is configured for maximum token lengths of 32,768. You can simply handle up to 131,072 tokens by modifying `rope_scaling` field in `config.json` file into the following parameters:
```
"rope_scaling": {
"type": "yarn",
"factor": 4.0,
"original_max_position_embeddings": 32768,
},
```
## License
The `A.X 3.1` model is licensed under `Apache License 2.0`.
## Citation
```
@article{SKTAdotX3.1,
title={A.X 3.1},
author={SKT AI Model Lab},
year={2025},
url={https://huggingface.co/skt/A.X-3.1}
}
```
## Contact
- Business & Partnership Contact: [[email protected]]([email protected]) |