File size: 15,185 Bytes
1d99449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
---
license: apache-2.0
license_link: https://huggingface.co/skt/A.X-3.1/blob/main/LICENSE
language:
- en
- ko
pipeline_tag: text-generation
library_name: transformers
model_id: skt/A.X-3.1
developers: SKT AI Model Lab
model-index:
- name: A.X-3.1
  results:
  - task:
      type: generate_until
      name: mmlu
    dataset:
      name: mmlu (chat CoT)
      type: hails/mmlu_no_train
    metrics:
    - type: exact_match
      value: 75.1
      name: exact_match
  - task:
      type: generate_until
      name: kmmlu
    dataset:
      name: kmmlu (chat CoT)
      type: HAERAE-HUB/KMMLU
    metrics:
    - type: exact_match
      value: 69.2
      name: exact_match
---

# A.X 3.1

<div align="center">
  <img src="./assets/A.X_from_scratch_logo_ko_4x3.png" alt="A.X Logo" width="300"/>
</div>
<p align="center"> <a href="https://huggingface.co/collections/skt/ax-3-686b288b3b05e1234f3f4c73">🤗 Models</a>   |   <a href="https://github.com/SKT-AI/A.X-3">🖥️ Github</a> </p>

## A.X 3.1 Highlights

SK Telecom released **A.X 3.1** (pronounced "A dot X"), a large language model (LLM) optimized for Korean-language understanding and enterprise deployment, on July 24, 2025.
This sovereign AI model was developed entirely in-house by SKT, encompassing model architecture, data curation, and training, all carried out on SKT’s proprietary supercomputing infrastructure, TITAN. 
The model was trained from scratch on a high-quality multilingual corpus comprising **2.1 trillion tokens**, with a primary focus on the Korean language. 

- **Authentic Korean Sovereign AI**: A.X 3.1 was trained on a high-quality multilingual dataset—fully curated in-house—using SKT’s proprietary GPU infrastructure.
- **Highly Efficient Multilingual LLM**: A.X 3.1 demonstrates superior performance among Korean LLMs, despite its relatively compact training size of 2.1 trillion tokens.
- **Superior Korean Proficiency**: A.X 3.1 achieved a score of **69.2** on the [KMMLU](https://huggingface.co/datasets/HAERAE-HUB/KMMLU): the leading benchmark for Korean-language evaluation and a Korean-specific adaptation of MMLU, outperforming other Korean-specified models.
- **Deep Korean Understanding**: A.X 3.1 obtained **77.4** on the [CLIcK](https://huggingface.co/datasets/EunsuKim/CLIcK): a benchmark for Korean cultural and contextual comprehension, outperforming other open-source models.
- **Efficient Token Usage**: A.X 3.1 requires approximately 33% fewer tokens than GPT-4o to process equivalent Korean inputs, facilitating more cost-effective and computationally efficient inference.
- **Long-Context Handling**: A.X 3.1 supports up to **32,768 tokens** natively, and up to **131,072 tokens** by applying YaRN.


## Core Technologies

A.X 3.1 represents **an efficient sovereign AI model**, developed end-to-end by SKT, encompassing model architecture, data curation, infrastructure deployment, and optimization.

### Model Architecture Specs

<table><thead>
  <tr>
    <th>Model</th>
    <th># Params</th>
    <th># Layers</th>
    <th># KV-Heads</th>
    <th>Hidden Dim</th>
    <th>FFN Dim</th>
  </tr>
  <tr>
    <th>A.X 3.1</th>
    <th>34B</th>
    <th>48</th>
    <th>8</th>
    <th>8192</th>
    <th>21824</th>
  </tr>
  </thead>
</table>

### High-Quality Data Pipeline & Strategic Mixture

- We collected and curated a training dataset comprising 20 trillion tokens sourced from diverse domains.
- The entire dataset was processed through SKT’s proprietary data pipeline, incorporating synthetic data generation and comprehensive quality filtering.
- For training  A.X 3.1, a total of **2.1 trillion tokens** were utilized, comprising a Korean-focused multilingual corpus.


## Benchmark Results

### Model Performance

<table>
<caption style="text-align:left; caption-side:bottom">* self-reported score</caption>
<thead>
  <tr>
    <th></th>
    <th></th>
    <th>A.X 3.1</th>
    <th>EXAONE-3.5-32B</th>
    <th>Kanana-flag-32.5B</th>
    <th>Gemma-3-27B</th>
    <th>Qwen2.5-32B</th>
  </tr></thead>
<tbody>
  <tr>
    <td rowspan="5">Knowledge</td>
    <td>KMMLU</td>
    <td>69.73</td>
    <td>57.17</td>
    <td>64.19*</td>
    <td>59.45</td>
    <td>61.93</td>
  </tr>
  <tr>
    <td>KMMLU-pro</td>
    <td>54.89</td>
    <td>45.39</td>
    <td>-</td>
    <td>50.43</td>
    <td>52.34</td>
  </tr>
  <tr>
    <td>KMMLU-redux</td>
    <td>62.66</td>
    <td>48.32</td>
    <td>-</td>
    <td>54.85</td>
    <td>52.15</td>
  </tr>
  <tr>
    <td>Click (chat CoT)</td>
    <td>77.09</td>
    <td>69.42</td>
    <td>-</td>
    <td>71.03</td>
    <td>68.17</td>
  </tr>
  <tr>
    <td>MMLU</td>
    <td>75.20</td>
    <td>77.1</td>
    <td>81.08*</td>
    <td>82.35</td>
    <td>83.4</td>
  </tr>
  <tr>
    <td rowspan="2">General</td>
    <td>Ko-MT-bench</td>
    <td>83.06</td>
    <td>80.19</td>
    <td>80.58*</td>
    <td>85.5</td>
    <td>72.88</td>
  </tr>
  <tr>
    <td>MT-bench</td>
    <td>84.19</td>
    <td>85.09</td>
    <td>83.56*</td>
    <td>84.38</td>
    <td>87.31</td>
  </tr>
  <tr>
    <td rowspan="2">IF</td>
    <td>Ko-IFEval</td>
    <td>75.29</td>
    <td>68.67</td>
    <td>-</td>
    <td>74.4</td>
    <td>73.24</td>
  </tr>
  <tr>
    <td>IFEval</td>
    <td>87.11</td>
    <td>82.67</td>
    <td>85.6*</td>
    <td>82.45</td>
    <td>82.27</td>
  </tr>
  <tr>
    <td rowspan="2">Math<br> </td>
    <td>HRM8K</td>
    <td>45.53</td>
    <td>36.3</td>
    <td>-</td>
    <td>48</td>
    <td>41.29</td>
  </tr>
  <tr>
    <td>MATH</td>
    <td>75.40</td>
    <td>61.64</td>
    <td>57.82*</td>
    <td>80.72</td>
    <td>73.26</td>
  </tr>
  <tr>
    <td rowspan="3">Code<br> <br> </td>
    <td>HumanEval+</td>
    <td>75.00</td>
    <td>77.44</td>
    <td>77.44*</td>
    <td>78.66</td>
    <td>82.32</td>
  </tr>
  <tr>
    <td>MBPP+</td>
    <td>70.90</td>
    <td>65.87</td>
    <td>69.84*</td>
    <td>74.07</td>
    <td>73.81</td>
  </tr>
  <tr>
    <td>LiveCodeBench</td>
    <td>23.34</td>
    <td>17.2</td>
    <td>-</td>
    <td>30.55</td>
    <td>26.9</td>
  </tr>
</tbody></table>


### Lightweight Model Performance

<table><thead>
  <tr>
    <th colspan="2">Benchmarks</th>
    <th>A.X 3.1 Light</th>
    <th>Kanana-1.5-8B</th>
    <th>EXAONE-3.5-7.8B</th>
    <th>Qwen2.5-7B</th>
    <th>Qwen3-8B<br>(w/o reasoning)</th>
  </tr></thead>
<tbody>
  <tr>
    <td rowspan="6">Knowledge</td>
    <td>KMMLU</td>
    <td>61.70</td>
    <td>48.28</td>
    <td>53.76</td>
    <td>49.56</td>
    <td>63.53</td>
  </tr>
  <tr>
    <td>KMMLU-pro</td>
    <td>45.54</td>
    <td>37.63</td>
    <td>40.11</td>
    <td>38.87</td>
    <td>50.71</td>
  </tr>
  <tr>
    <td>KMMLU-redux</td>
    <td>52.34</td>
    <td>35.33</td>
    <td>42.21</td>
    <td>38.58</td>
    <td>55.74</td>
  </tr>
  <tr>
    <td>CLIcK</td>
    <td>71.22</td>
    <td>61.30</td>
    <td>64.11</td>
    <td>58.30</td>
    <td>63.31</td>
  </tr>
  <tr>
    <td>KoBALT</td>
    <td>27.43</td>
    <td>23.14</td>
    <td>21.71</td>
    <td>21.57</td>
    <td>26.57</td>
  </tr>
  <tr>
    <td>MMLU</td>
    <td>66.95</td>
    <td>68.82</td>
    <td>72.20</td>
    <td>75.40</td>
    <td>82.89</td>
  </tr>
  <tr>
    <td rowspan="2">General</td>
    <td>Ko-MT-Bench</td>
    <td>78.56</td>
    <td>76.30</td>
    <td>81.06</td>
    <td>61.31</td>
    <td>64.06</td>
  </tr>
  <tr>
    <td>MT-Bench</td>
    <td>74.38</td>
    <td>77.60</td>
    <td>83.50</td>
    <td>79.37</td>
    <td>65.69</td>
  </tr>
  <tr>
    <td rowspan="2">Instruction<br>Following</td>
    <td>Ko-IFEval</td>
    <td>70.04</td>
    <td>69.96</td>
    <td>65.01</td>
    <td>60.73</td>
    <td>73.39</td>
  </tr>
  <tr>
    <td>IFEval</td>
    <td>79.86</td>
    <td>80.11</td>
    <td>82.61</td>
    <td>76.73</td>
    <td>85.38</td>
  </tr>
  <tr>
    <td rowspan="2">Math</td>
    <td>HRM8K</td>
    <td>41.70</td>
    <td>30.87</td>
    <td>31.88</td>
    <td>35.13</td>
    <td>52.50</td>
  </tr>
  <tr>
    <td>MATH</td>
    <td>70.14</td>
    <td>59.28</td>
    <td>63.20</td>
    <td>65.58</td>
    <td>71.48</td>
  </tr>
  <tr>
    <td rowspan="2">Code<br></td>
    <td>HumanEval+</td>
    <td>73.78</td>
    <td>76.83</td>
    <td>76.83</td>
    <td>74.39</td>
    <td>77.44</td>
  </tr>
  <tr>
    <td>MBPP+</td>
    <td>61.64</td>
    <td>67.99</td>
    <td>64.29</td>
    <td>68.50</td>
    <td>62.17</td>
  </tr>
</tbody></table>

## 🚀 Quickstart

### with HuggingFace Transformers

- `transformers>=4.46.0` or the latest version is required to use `skt/A.X-3.1`
```bash
pip install transformers>=4.46.0
```

#### Example Usage

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "skt/A.X-3.1"
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    device_map="auto",
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)

messages = [
    {"role": "system", "content": "당신은 사용자가 제공하는 영어 문장들을 한국어로 번역하는 AI 전문가입니다."},
    {"role": "user", "content": "The first human went into space and orbited the Earth on April 12, 1961."},
]
input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)

with torch.no_grad():
    output = model.generate(
        input_ids,
        max_new_tokens=128,
        do_sample=False,
    )

len_input_prompt = len(input_ids[0])
response = tokenizer.decode(output[0][len_input_prompt:], skip_special_tokens=True)
print(response)
# Output:
# 우주에서 인간이 처음으로 지구 궤도를 돈 날은 1961년 4월 12일입니다.
```

### with vLLM

- `vllm>=v0.6.4.post1` or the latest version is required to use tool-use feature
```bash
pip install vllm>=v0.6.4.post1
# if you don't want to activate tool-use feature, just commenting out below vLLM option
VLLM_OPTION="--enable-auto-tool-choice --tool-call-parser hermes"
vllm serve skt/A.X-3.1 $VLLM_OPTION
```

#### Example Usage 
  
```python
from openai import OpenAI

def call(messages, model):
    completion = client.chat.completions.create(
        model=model,
        messages=messages,
    )
    print(completion.choices[0].message)

client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="api_key"
)
model = "skt/A.X-3.1"
messages = [{"role": "user", "content": "에어컨 여름철 적정 온도는? 한줄로 답변해줘"}]
call(messages, model)
# Output:
# 여름철 에어컨 적정 온도는 24~26도입니다.

messages = [{"role": "user", "content": "What is the appropriate temperature for air conditioning in summer? Respond in a single sentence."}]
call(messages, model)
# Output:
# The appropriate temperature for air conditioning in summer is around 78°F (26°C).
```

#### Examples for tool-use
```python
from openai import OpenAI


def call(messages, model):
    completion = client.chat.completions.create(
        model=model,
        messages=messages,
        tools=tools
    )
    print(completion.choices[0].message)


client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="api_key"
)
model = "skt/A.X-3.1"

calculate_discount = {
    "type": "function",
    "function": {
        "name": "calculate_discount",
        "description": "원가격과 할인율(퍼센트 단위)을 입력받아 할인된 가격을계산한다.",
        "parameters": {
            "type": "object",
            "properties": {
                "original_price": {
                    "type": "number",
                    "description": "상품의 원래 가격"
                },
                "discount_percentage": {
                    "type": "number",
                    "description": "적용할 할인율"
                }
            },
            "required": ["original_price", "discount_percentage"]
        }
    }
}
get_exchange_rate = {
    "type": "function",
    "function": {
        "name": "get_exchange_rate",
        "description": "두 통화 간의 환율을 가져온다.",
        "parameters": {
            "type": "object",
            "properties": {
                "base_currency": {
                    "type": "string",
                    "description": "The currency to convert from."
                },
                "target_currency": {
                    "type": "string",
                    "description": "The currency to convert to."
                }
            },
            "required": ["base_currency", "target_currency"]
        }
    }
}
tools = [calculate_discount, get_exchange_rate]

### Slot filling ###
messages = [{"role": "user", "content": "우리가 뭘 사야되는데 원가가 57600원인데 직원할인 받으면 얼마야?"}]
call(messages, model)
# Output:
# ChatCompletionMessage(content='직원 할인율이 몇 퍼센트인지 알려주신다면 할인된 가격을 계산할 수 있습니다. 할인율이 몇 퍼센트인지 알려주실 수 있나요?', role='assistant', tool_calls=[])


### Function calling ###
messages = [
    {"role": "user", "content": "우리가 뭘 사야되는데 원가가 57600원인데 직원할인 받으면 얼마야?"},
    {"role": "assistant", "content": "직원 할인율이 몇 퍼센트인지 알려주신다면 할인된 가격을 계산할 수 있습니다. 할인율이 몇 퍼센트인지 알려주실 수 있나요?"},
    {"role": "user", "content": "15% 할인 받을 수 있어."},
]
call(messages, model)
# Output: 
# ChatCompletionMessage(content=None, role='assistant', tool_calls=[ChatCompletionMessageToolCall(id='chatcmpl-tool-cb9e827f752d4725abc94377223b2b0f', function=Function(arguments='{"original_price": 57600, "discount_percentage": 15}', name='calculate_discount'), type='function')])


### Completion ###
messages = [
    {"role": "user", "content": "우리가 뭘 사야되는데 원가가 57600원인데 직원할인 받으면 얼마야?"},
    {"role": "assistant", "content": "직원 할인율이 몇 퍼센트인지 알려주신다면 할인된 가격을 계산할 수 있습니다. 할인율이 몇 퍼센트인지 알려주실 수 있나요?"},
    {"role": "user", "content": "15% 할인 받을 수 있어."},
    {"role": "tool", "tool_call_id": "random_id", "name": "calculate_discount", "content": "{\"original_price\": 57600, \"discount_percentage\": 15, \"discounted_price\": 48960.0}"}
]
call(messages, model)
# Output: 
# ChatCompletionMessage(content='직원 할인을 받으면 57600원의 상품은 15% 할인을 받아 48960원이 됩니다.', role='assistant', tool_calls=[])
```

### Extend supported token length

The `config.json` file of A.X 3.1 uploaded to HuggingFace is configured for maximum token lengths of 32,768. You can simply handle up to 131,072 tokens by modifying `rope_scaling` field in `config.json` file into the following parameters:

```
"rope_scaling": {
  "type": "yarn",
  "factor": 4.0,
  "original_max_position_embeddings": 32768,
},
```

## License

The `A.X 3.1` model is licensed under `Apache License 2.0`.

## Citation
```
@article{SKTAdotX3.1,
  title={A.X 3.1},
  author={SKT AI Model Lab},
  year={2025},
  url={https://huggingface.co/skt/A.X-3.1}
}
```

## Contact

- Business & Partnership Contact: [[email protected]]([email protected])