initial-commit
Browse files- .gitattributes +1 -0
- README.md +525 -3
- chat_template.jinja +93 -0
- config.json +37 -0
- generation_config.json +11 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +262 -0
- special_tokens_map.json +20 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
.gitattributes
CHANGED
|
@@ -33,4 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 36 |
demo.mp4 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
demo.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,525 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: snorbyte/snorTTS-Indic-v0
|
| 3 |
+
tags:
|
| 4 |
+
- text-to-speech
|
| 5 |
+
- tts
|
| 6 |
+
- transformers
|
| 7 |
+
- unsloth
|
| 8 |
+
- llama
|
| 9 |
+
- audio
|
| 10 |
+
- speech-synthesis
|
| 11 |
+
license: apache-2.0
|
| 12 |
+
language:
|
| 13 |
+
- hi
|
| 14 |
+
- gu
|
| 15 |
+
- mr
|
| 16 |
+
- pa
|
| 17 |
+
- bn
|
| 18 |
+
- te
|
| 19 |
+
- kn
|
| 20 |
+
- ml
|
| 21 |
+
- ta
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# snorTTS-Indic-v0
|
| 25 |
+
|
| 26 |
+
**Open-source multilingual Indic TTS model**
|
| 27 |
+
Human Sounding Indic TTS multi-stage Finetuned by Snorbyte on 140 hrs of proprietary speech across 9 Indic languages. The Base model is a LLaMA-3.2-3B Instruct model pretrained in 100k hours of English and finetuned in Hindi by canopylabs.
|
| 28 |
+
|
| 29 |
+
---
|
| 30 |
+
|
| 31 |
+
## Capabilities
|
| 32 |
+
|
| 33 |
+
- Human Sounding Speech
|
| 34 |
+
- Natural Human-like Delivery of Colloquial Transcripts (with English Mix and disfluencies)
|
| 35 |
+
- Multi-Lingual Code Switching
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
## Model Overview
|
| 39 |
+
|
| 40 |
+
| Item | Details |
|
| 41 |
+
|------------------------|----------------------------------------------------------------------------------------------------------------------------|
|
| 42 |
+
| **Base model** | `canopylabs/3b-hi-pretrain-research_release` |
|
| 43 |
+
| **Architecture** | LLaMA-3.2-3B-Instruct (`transformers`) |
|
| 44 |
+
| **Audio codec** | SNAC @ 24 kHz, 3 codebooks (12,288 new tokens) |
|
| 45 |
+
| **Training toolkit** | [Unsloth](https://github.com/unslothai/unsloth) + HF TRL |
|
| 46 |
+
| **Languages** | Hindi (hi), Gujarati (gu), Marathi (mr), Punjabi (pa), Bengali (bn), Telugu (te), Kannada (kn), Malayalam (ml), Tamil (ta) |
|
| 47 |
+
|
| 48 |
+
---
|
| 49 |
+
## Inference
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
# Load SNAC Model
|
| 53 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
| 54 |
+
logger.success("Loaded SNAC model for audio decoding.")
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
# Function to construct audio file from SNAC codes generated by Model
|
| 59 |
+
def generate_audio(
|
| 60 |
+
row, model, user=False, temperature=0.4, top_p=0.9, repetition_penalty=1.05
|
| 61 |
+
):
|
| 62 |
+
if user:
|
| 63 |
+
prompt = row["eval_text_user"]
|
| 64 |
+
else:
|
| 65 |
+
prompt = row["eval_text_no_user"]
|
| 66 |
+
inputs = tokenizer(prompt, add_special_tokens=False, return_tensors="pt")
|
| 67 |
+
max_tokens = MAX_SEQ_LENGTH - inputs.input_ids.shape[1]
|
| 68 |
+
output = model.generate(
|
| 69 |
+
input_ids=inputs.input_ids.to("cuda"),
|
| 70 |
+
attention_mask=inputs.attention_mask.to("cuda"),
|
| 71 |
+
max_new_tokens=max_tokens,
|
| 72 |
+
temperature=temperature,
|
| 73 |
+
top_p=top_p,
|
| 74 |
+
repetition_penalty=repetition_penalty,
|
| 75 |
+
eos_token_id=end_of_speech_id,
|
| 76 |
+
)
|
| 77 |
+
audio_ids = []
|
| 78 |
+
for id in output[0]:
|
| 79 |
+
if id >= audio_start_id:
|
| 80 |
+
audio_ids.append(id.item())
|
| 81 |
+
clean_audio_ids = []
|
| 82 |
+
for i in range((len(audio_ids) + 1) // 7):
|
| 83 |
+
for j in range(7):
|
| 84 |
+
clean_audio_ids += [audio_ids[7 * i + j] - audio_start_id]
|
| 85 |
+
codes = [[], [], []]
|
| 86 |
+
for i in range((len(clean_audio_ids) + 1) // 7):
|
| 87 |
+
codes[0].append(clean_audio_ids[7 * i])
|
| 88 |
+
codes[1].append(clean_audio_ids[7 * i + 1] - 4096)
|
| 89 |
+
codes[2].append(clean_audio_ids[7 * i + 2] - (2 * 4096))
|
| 90 |
+
codes[2].append(clean_audio_ids[7 * i + 3] - (3 * 4096))
|
| 91 |
+
codes[1].append(clean_audio_ids[7 * i + 4] - (4 * 4096))
|
| 92 |
+
codes[2].append(clean_audio_ids[7 * i + 5] - (5 * 4096))
|
| 93 |
+
codes[2].append(clean_audio_ids[7 * i + 6] - (6 * 4096))
|
| 94 |
+
codes = [
|
| 95 |
+
torch.tensor(codes[0]).unsqueeze(0),
|
| 96 |
+
torch.tensor(codes[1]).unsqueeze(0),
|
| 97 |
+
torch.tensor(codes[2]).unsqueeze(0),
|
| 98 |
+
]
|
| 99 |
+
try:
|
| 100 |
+
audio = snac_model.decode(codes)
|
| 101 |
+
except Exception as e:
|
| 102 |
+
logger.error(f"Error decoding audio: {e}")
|
| 103 |
+
return None
|
| 104 |
+
return audio.detach().squeeze().to("cpu").numpy()
|
| 105 |
+
```
|
| 106 |
+
|
| 107 |
+
```python
|
| 108 |
+
prompt = {
|
| 109 |
+
"eval_text_no_user": f"<custom_token_3><|begin_of_text|>நிச்சயமா. ரோம் ல் இரவு நேரம் ரொம்ப அழகா இருக்கு—piazzaகள் சுத்துறதுக்கு நல்ல நேரம்.<|eot_id|><custom_token_4><custom_token_5><custom_token_1>"
|
| 110 |
+
},
|
| 111 |
+
train_sample = generate_audio(prompt, model, True)
|
| 112 |
+
if train_sample is None:
|
| 113 |
+
logger.error("Failed to generate audio")
|
| 114 |
+
else:
|
| 115 |
+
sf.write("output.wav", train_sample, 24000)
|
| 116 |
+
logger.success("Generated and saved audio as output.wav")
|
| 117 |
+
```
|
| 118 |
+
---
|
| 119 |
+
|
| 120 |
+
## Types of Prompts
|
| 121 |
+
|
| 122 |
+
For better results, generate audio with specific speakerIds mentioned below.
|
| 123 |
+
|
| 124 |
+
- **Normal prompt:** Just pass the transcript in the format below
|
| 125 |
+
```python
|
| 126 |
+
{
|
| 127 |
+
"eval_text_no_user": f"<custom_token_3><|begin_of_text|>நிச்சயமா. ரோம் ல் இரவு நேரம் ரொம்ப அழகா இருக்கு—piazzaகள் சுத்துறதுக்கு நல்ல நேரம்.<|eot_id|><custom_token_4><custom_token_5><custom_token_1>"
|
| 128 |
+
},
|
| 129 |
+
```
|
| 130 |
+
- **Speaker specific prompt**: Stick to the same format, just pass ```<language>{speakerId}:`` before the transcript. You can make any speaker speak in any of the 9 Languages
|
| 131 |
+
```python
|
| 132 |
+
{
|
| 133 |
+
"eval_text_user": f"<custom_token_3><|begin_of_text|>hindi159: चलते रहो इस सफर में बिना रुके, क्योंकि मंज़िलें खुद राह दिखाने लगती हैं <|eot_id|><custom_token_4><custom_token_5><custom_token_1>"
|
| 134 |
+
}
|
| 135 |
+
```
|
| 136 |
+
---
|
| 137 |
+
|
| 138 |
+
### Recommended Speaker Ids
|
| 139 |
+
|
| 140 |
+
| Language | Speakers |
|
| 141 |
+
|-----------|--------------|
|
| 142 |
+
| Hindi | [159,49] |
|
| 143 |
+
| Tamil | [188,128] |
|
| 144 |
+
| Bengali | [125] |
|
| 145 |
+
| Malayalam | [189,124] |
|
| 146 |
+
| Kannada | [142,138] |
|
| 147 |
+
| Telugu | [69,133] |
|
| 148 |
+
| Punjabi | [191,67,201] |
|
| 149 |
+
| Gujarati | [62,190,187] |
|
| 150 |
+
| Marathi | [205,82] |
|
| 151 |
+
|
| 152 |
+
- **Multi-lingual transcript specific prompt**:. Stick to the same format, just pass ```<language>{speakerId}:`` before the transcript. Pass the native language of the speakerId. YOu can
|
| 153 |
+
```python
|
| 154 |
+
{
|
| 155 |
+
"eval_text_user": f"<custom_token_3><|begin_of_text|>bengali125: मुझे तो लगा वो आएगा, ஆனா அவன் வந்து full drama பண்ணிட்டான், আর শেষে আবার আমাকে দোষ দিচ্ছে <|eot_id|><custom_token_4><custom_token_5><custom_token_1>"
|
| 156 |
+
}
|
| 157 |
+
```
|
| 158 |
+
---
|
| 159 |
+
|
| 160 |
+
## Training Details
|
| 161 |
+
- **Dataset:** [indic-tts-sample-snac-encoded](https://huggingface.co/datasets/snorbyte/indic-tts-sample-snac-encoded) curated by [snorbyte](https://snorbyte.com)
|
| 162 |
+
- 135 hours (~68 k samples) split into:
|
| 163 |
+
- stage_1: Text-Reading (47 k scripted) + Semi-spontaneous dialogue (16 k)
|
| 164 |
+
- stage_2: Colloquial Conversational Snippets (4.4 k)
|
| 165 |
+
- eval: Evaluation samples for training (200)
|
| 166 |
+
- 9 Indic languages, balanced across high-/low-quality speakers.
|
| 167 |
+
|
| 168 |
+
- **Hyperparameters:**
|
| 169 |
+
- LoRA rank: 192
|
| 170 |
+
- LoRA alpha: 384
|
| 171 |
+
- Learning rate
|
| 172 |
+
- Batch size
|
| 173 |
+
- Per Device Train Batch Size: 8
|
| 174 |
+
- Gradient Accumulation Steps: 4
|
| 175 |
+
- Optimizer: adamw_8bit
|
| 176 |
+
- Learning Rate: 2e-5
|
| 177 |
+
- Scheduler: cosine
|
| 178 |
+
- Warmup Ratio: 0.02
|
| 179 |
+
- Epochs: 2
|
| 180 |
+
- Max Seq Length: 2048
|
| 181 |
+
- SFT Trainer Packing: True
|
| 182 |
+
|
| 183 |
+
- **Compute**
|
| 184 |
+
- GPU: 1 NVIDIA H100 on Vast.ai
|
| 185 |
+
---
|
| 186 |
+
|
| 187 |
+
## Training Code
|
| 188 |
+
|
| 189 |
+
```bash
|
| 190 |
+
pip install torch unslot datasets loguru snac trl soundfile wandb transformers
|
| 191 |
+
```
|
| 192 |
+
|
| 193 |
+
```python
|
| 194 |
+
from unsloth import FastLanguageModel
|
| 195 |
+
|
| 196 |
+
import os
|
| 197 |
+
|
| 198 |
+
from datasets import load_dataset
|
| 199 |
+
from loguru import logger
|
| 200 |
+
from snac import SNAC
|
| 201 |
+
from trl import SFTConfig, SFTTrainer
|
| 202 |
+
import soundfile as sf
|
| 203 |
+
import torch
|
| 204 |
+
import wandb
|
| 205 |
+
from transformers import AutoModelForCausalLM
|
| 206 |
+
from transformers import AutoTokenizer
|
| 207 |
+
```
|
| 208 |
+
|
| 209 |
+
```python
|
| 210 |
+
# Set up constants and configurations.
|
| 211 |
+
BASE_MODEL = "canopylabs/3b-hi-pretrain-research_release"
|
| 212 |
+
STAGE = 1 #1 or 2 based on the dataset you are using
|
| 213 |
+
if STAGE == 1:
|
| 214 |
+
TRAIN_CSV_PATH = "" #path to stage_1 csv dataset
|
| 215 |
+
else:
|
| 216 |
+
TRAIN_CSV_PATH = "" #path to stage_2 csv dataset
|
| 217 |
+
|
| 218 |
+
MAX_SEQ_LENGTH = 2048
|
| 219 |
+
PER_DEVICE_TRAIN_BATCH_SIZE = 8
|
| 220 |
+
GRADIENT_ACCUMULATION_STEPS = 4
|
| 221 |
+
HUGGINGFACE_TOKEN = "" #pass you huggingface token
|
| 222 |
+
MODEL_NAME = "snorTTS-indic"
|
| 223 |
+
WANDB_USERNAME = "" #pass your wandb username
|
| 224 |
+
WANDB_PROJECT = "snorTTS-indic"
|
| 225 |
+
WANDB_LOG_MODEL = "checkpoint"
|
| 226 |
+
WANDB_RUN_NAME = "run-0"
|
| 227 |
+
WANDB_RUN_ID = None
|
| 228 |
+
SEED = 3407
|
| 229 |
+
|
| 230 |
+
# Set up environment variables for Weights & Biases.
|
| 231 |
+
os.environ["WANDB_PROJECT"] = WANDB_PROJECT
|
| 232 |
+
os.environ["WANDB_LOG_MODEL"] = WANDB_LOG_MODEL
|
| 233 |
+
```
|
| 234 |
+
|
| 235 |
+
```python
|
| 236 |
+
# Set up constants and configurations.
|
| 237 |
+
BASE_MODEL = "canopylabs/3b-hi-pretrain-research_release"
|
| 238 |
+
STAGE = 1 #1 or 2 based on the dataset you are using
|
| 239 |
+
if STAGE == 1:
|
| 240 |
+
TRAIN_CSV_PATH = "" #path to stage_1 csv dataset
|
| 241 |
+
else:
|
| 242 |
+
TRAIN_CSV_PATH = "" #path to stage_2 csv dataset
|
| 243 |
+
|
| 244 |
+
MAX_SEQ_LENGTH = 2048
|
| 245 |
+
PER_DEVICE_TRAIN_BATCH_SIZE = 8
|
| 246 |
+
GRADIENT_ACCUMULATION_STEPS = 4
|
| 247 |
+
HUGGINGFACE_TOKEN = "" #pass you huggingface token
|
| 248 |
+
MODEL_NAME = "snorTTS-indic"
|
| 249 |
+
WANDB_USERNAME = "" #pass your wandb username
|
| 250 |
+
WANDB_PROJECT = "snorTTS-indic"
|
| 251 |
+
WANDB_LOG_MODEL = "checkpoint"
|
| 252 |
+
WANDB_RUN_NAME = "run-0"
|
| 253 |
+
WANDB_RUN_ID = None
|
| 254 |
+
SEED = 3407
|
| 255 |
+
|
| 256 |
+
# Set up environment variables for Weights & Biases.
|
| 257 |
+
os.environ["WANDB_PROJECT"] = WANDB_PROJECT
|
| 258 |
+
os.environ["WANDB_LOG_MODEL"] = WANDB_LOG_MODEL
|
| 259 |
+
```
|
| 260 |
+
|
| 261 |
+
```python
|
| 262 |
+
# Load the model and tokenizer.
|
| 263 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 264 |
+
model_name=BASE_MODEL,
|
| 265 |
+
load_in_4bit=true,
|
| 266 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
| 267 |
+
token=HUGGINGFACE_TOKEN,
|
| 268 |
+
)
|
| 269 |
+
logger.success(f"Loaded model: {BASE_MODEL}")
|
| 270 |
+
|
| 271 |
+
# Get parameter efficient fine-tuning model.
|
| 272 |
+
model = FastLanguageModel.get_peft_model(
|
| 273 |
+
model,
|
| 274 |
+
r=192,
|
| 275 |
+
target_modules=[
|
| 276 |
+
"q_proj",
|
| 277 |
+
"k_proj",
|
| 278 |
+
"v_proj",
|
| 279 |
+
"o_proj",
|
| 280 |
+
"up_proj",
|
| 281 |
+
"down_proj",
|
| 282 |
+
"gate_proj",
|
| 283 |
+
"lm_head",
|
| 284 |
+
"embed_tokens",
|
| 285 |
+
],
|
| 286 |
+
lora_alpha=384,
|
| 287 |
+
random_state=SEED,
|
| 288 |
+
)
|
| 289 |
+
|
| 290 |
+
# Load the special tokens for the tokenizer.
|
| 291 |
+
tokeniser_length = 128256
|
| 292 |
+
|
| 293 |
+
start_of_text_id = 128000
|
| 294 |
+
end_of_text_id = 128009
|
| 295 |
+
start_of_speech_id = tokeniser_length + 1
|
| 296 |
+
end_of_speech_id = tokeniser_length + 2
|
| 297 |
+
start_of_human_id = tokeniser_length + 3
|
| 298 |
+
end_of_human_id = tokeniser_length + 4
|
| 299 |
+
start_of_ai_id = tokeniser_length + 5
|
| 300 |
+
end_of_ai_id = tokeniser_length + 6
|
| 301 |
+
pad_token_id = tokeniser_length + 7
|
| 302 |
+
audio_start_id = tokeniser_length + 10
|
| 303 |
+
|
| 304 |
+
start_of_text_token = tokenizer.decode([start_of_text_id])
|
| 305 |
+
end_of_text_token = tokenizer.decode([end_of_text_id])
|
| 306 |
+
start_of_speech_token = tokenizer.decode([start_of_speech_id])
|
| 307 |
+
end_of_speech_token = tokenizer.decode([end_of_speech_id])
|
| 308 |
+
start_of_human_token = tokenizer.decode([start_of_human_id])
|
| 309 |
+
end_of_human_token = tokenizer.decode([end_of_human_id])
|
| 310 |
+
start_of_ai_token = tokenizer.decode([start_of_ai_id])
|
| 311 |
+
end_of_ai_token = tokenizer.decode([end_of_ai_id])
|
| 312 |
+
pad_token = tokenizer.decode([pad_token_id])
|
| 313 |
+
audio_start_token = tokenizer.decode([audio_start_id])
|
| 314 |
+
|
| 315 |
+
logger.success("Load special tokens for the tokenizer.")
|
| 316 |
+
|
| 317 |
+
# Set the padding token and padding side.
|
| 318 |
+
tokenizer.pad_token = pad_token
|
| 319 |
+
tokenizer.padding_side = "left"
|
| 320 |
+
logger.success("Set padding token and padding side for the tokenizer.")
|
| 321 |
+
```
|
| 322 |
+
|
| 323 |
+
```python
|
| 324 |
+
# Load training and validation datasets.
|
| 325 |
+
train_dataset = load_dataset("csv", data_files=TRAIN_CSV_PATH)["train"]
|
| 326 |
+
eval_dataset = load_dataset("csv", data_files=VALID_CSV_PATH)["train"]
|
| 327 |
+
|
| 328 |
+
if TRAIN_NUM_SAMPLES:
|
| 329 |
+
train_dataset = train_dataset.shuffle(seed=SEED).select(
|
| 330 |
+
range(min(TRAIN_NUM_SAMPLES, len(train_dataset)))
|
| 331 |
+
)
|
| 332 |
+
|
| 333 |
+
if EVAL_NUM_SAMPLES:
|
| 334 |
+
eval_dataset = eval_dataset.shuffle(seed=SEED).select(
|
| 335 |
+
range(min(EVAL_NUM_SAMPLES, len(eval_dataset)))
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
logger.success(
|
| 339 |
+
f"Loaded datasets: {len(train_dataset)} training samples, {len(eval_dataset)} evaluation samples."
|
| 340 |
+
)
|
| 341 |
+
```
|
| 342 |
+
|
| 343 |
+
```python
|
| 344 |
+
# Flatten (interleave) and get SNAC token IDs from the audio codes.
|
| 345 |
+
def flatten_and_get_audio_input_ids(row):
|
| 346 |
+
audio_codes = row["snac_codes"]
|
| 347 |
+
if isinstance(audio_codes, str):
|
| 348 |
+
audio_codes = eval(audio_codes)
|
| 349 |
+
snac_token_ids = []
|
| 350 |
+
for i in range(len(audio_codes[0])):
|
| 351 |
+
snac_token_ids.append(audio_codes[0][i] + 128266)
|
| 352 |
+
snac_token_ids.append(audio_codes[1][2 * i] + 128266 + 4096)
|
| 353 |
+
snac_token_ids.append(audio_codes[2][4 * i] + 128266 + (2 * 4096))
|
| 354 |
+
snac_token_ids.append(audio_codes[2][(4 * i) + 1] + 128266 + (3 * 4096))
|
| 355 |
+
snac_token_ids.append(audio_codes[1][(2 * i) + 1] + 128266 + (4 * 4096))
|
| 356 |
+
snac_token_ids.append(audio_codes[2][(4 * i) + 2] + 128266 + (5 * 4096))
|
| 357 |
+
snac_token_ids.append(audio_codes[2][(4 * i) + 3] + 128266 + (6 * 4096))
|
| 358 |
+
row["snac_token_ids"] = snac_token_ids
|
| 359 |
+
return row
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
train_dataset = train_dataset.map(flatten_and_get_audio_input_ids)
|
| 363 |
+
eval_dataset = eval_dataset.map(flatten_and_get_audio_input_ids)
|
| 364 |
+
logger.success("Flattened and extracted SNAC token IDs from audio codes.")
|
| 365 |
+
```
|
| 366 |
+
|
| 367 |
+
```python
|
| 368 |
+
# Filter out rows with empty or None audio codes.
|
| 369 |
+
train_dataset = train_dataset.filter(
|
| 370 |
+
lambda x: x["snac_token_ids"] is not None and len(x["snac_token_ids"]) > 0
|
| 371 |
+
)
|
| 372 |
+
eval_dataset = eval_dataset.filter(
|
| 373 |
+
lambda x: x["snac_token_ids"] is not None and len(x["snac_token_ids"]) > 0
|
| 374 |
+
)
|
| 375 |
+
logger.success("Filtered datasets to remove rows with empty or None audio codes.")
|
| 376 |
+
```
|
| 377 |
+
|
| 378 |
+
```python
|
| 379 |
+
# Remove duplicate frames from the audio codes.
|
| 380 |
+
def remove_duplicate_frames(row):
|
| 381 |
+
vals = row["snac_token_ids"]
|
| 382 |
+
if len(vals) % 7 != 0:
|
| 383 |
+
raise ValueError("Input list length must be divisible by 7")
|
| 384 |
+
result = vals[:7]
|
| 385 |
+
for i in range(7, len(vals), 7):
|
| 386 |
+
current_first = vals[i]
|
| 387 |
+
previous_first = result[-7]
|
| 388 |
+
if current_first != previous_first:
|
| 389 |
+
result.extend(vals[i : i + 7])
|
| 390 |
+
row["snac_token_ids"] = result
|
| 391 |
+
return row
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
train_dataset = train_dataset.map(remove_duplicate_frames)
|
| 395 |
+
eval_dataset = eval_dataset.map(remove_duplicate_frames)
|
| 396 |
+
logger.success("Removed duplicate frames from audio codes.")
|
| 397 |
+
```
|
| 398 |
+
|
| 399 |
+
```python
|
| 400 |
+
# Define a function to format the prompt for each row in the dataset.
|
| 401 |
+
def format_text(row):
|
| 402 |
+
text = (
|
| 403 |
+
f"{start_of_human_token}{start_of_text_token}{row['language']}{row['user']}: {row['utterance']}{end_of_text_token}"
|
| 404 |
+
f"{end_of_human_token}{start_of_ai_token}{start_of_speech_token}"
|
| 405 |
+
f"{tokenizer.decode(row['snac_token_ids'])}{end_of_speech_token}{end_of_ai_token}"
|
| 406 |
+
)
|
| 407 |
+
eval_text_user = (
|
| 408 |
+
f"{start_of_human_token}{start_of_text_token}{row['language']}{row['user']}: {row['utterance']}{end_of_text_token}"
|
| 409 |
+
f"{end_of_human_token}{start_of_ai_token}{start_of_speech_token}"
|
| 410 |
+
)
|
| 411 |
+
eval_text_no_user = (
|
| 412 |
+
f"{start_of_human_token}{start_of_text_token}{row['utterance']}{end_of_text_token}"
|
| 413 |
+
f"{end_of_human_token}{start_of_ai_token}{start_of_speech_token}"
|
| 414 |
+
)
|
| 415 |
+
row["text"] = text
|
| 416 |
+
row["eval_text_user"] = eval_text_user
|
| 417 |
+
row["eval_text_no_user"] = eval_text_no_user
|
| 418 |
+
return row
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
train_dataset = train_dataset.map(format_text)
|
| 422 |
+
eval_dataset = eval_dataset.map(format_text)
|
| 423 |
+
logger.success("Formatted text for training and evaluation datasets.")
|
| 424 |
+
```
|
| 425 |
+
|
| 426 |
+
```python
|
| 427 |
+
# Tokenize the text in the datasets without adding special tokens.
|
| 428 |
+
def tokenize_function(example):
|
| 429 |
+
return tokenizer(
|
| 430 |
+
example["text"],
|
| 431 |
+
add_special_tokens=False,
|
| 432 |
+
truncation=True,
|
| 433 |
+
max_length=MAX_SEQ_LENGTH,
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
train_dataset = train_dataset.map(tokenize_function)
|
| 438 |
+
eval_dataset = eval_dataset.map(tokenize_function)
|
| 439 |
+
logger.success("Tokenized text in the datasets without adding special tokens.")
|
| 440 |
+
```
|
| 441 |
+
|
| 442 |
+
```python
|
| 443 |
+
# Set training arguments.
|
| 444 |
+
training_args = SFTConfig(
|
| 445 |
+
num_train_epochs=2,
|
| 446 |
+
per_device_train_batch_size=PER_DEVICE_TRAIN_BATCH_SIZE,
|
| 447 |
+
gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS,
|
| 448 |
+
optim="adamw_8bit",
|
| 449 |
+
learning_rate=2e-5,
|
| 450 |
+
lr_scheduler_type="cosine",
|
| 451 |
+
warmup_ratio=0.02,
|
| 452 |
+
do_eval=True,
|
| 453 |
+
eval_strategy="steps",
|
| 454 |
+
eval_steps=50,
|
| 455 |
+
logging_strategy="steps",
|
| 456 |
+
logging_steps=1,
|
| 457 |
+
save_strategy="no",
|
| 458 |
+
save_only_model=True,
|
| 459 |
+
# save_steps=250,
|
| 460 |
+
output_dir="outputs",
|
| 461 |
+
report_to="wandb",
|
| 462 |
+
run_name=WANDB_RUN_NAME,
|
| 463 |
+
seed=SEED,
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
# Initialize the SFTTrainer.
|
| 467 |
+
trainer = SFTTrainer(
|
| 468 |
+
model=model,
|
| 469 |
+
tokenizer=tokenizer,
|
| 470 |
+
train_dataset=train_dataset,
|
| 471 |
+
eval_dataset=eval_dataset,
|
| 472 |
+
dataset_text_field="text",
|
| 473 |
+
max_seq_length=MAX_SEQ_LENGTH,
|
| 474 |
+
dataset_num_proc=2,
|
| 475 |
+
packing=True,
|
| 476 |
+
args=training_args,
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
logger.success("Initialized SFTTrainer with the specified configuration.")
|
| 480 |
+
```
|
| 481 |
+
|
| 482 |
+
```python
|
| 483 |
+
# Start the training process.
|
| 484 |
+
logger.info("Starting the training process...")
|
| 485 |
+
|
| 486 |
+
run = wandb.init()
|
| 487 |
+
|
| 488 |
+
if WANDB_RUN_ID:
|
| 489 |
+
logger.info(f"Resuming from Weights & Biases run ID: {WANDB_RUN_ID}")
|
| 490 |
+
|
| 491 |
+
artifact = run.use_artifact(
|
| 492 |
+
f"{WANDB_USERNAME}/{WANDB_PROJECT}/{WANDB_RUN_ID}", type="model"
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
artifact_dir = artifact.download()
|
| 496 |
+
|
| 497 |
+
trainer.train(resume_from_checkpoint=artifact_dir)
|
| 498 |
+
else:
|
| 499 |
+
try:
|
| 500 |
+
logger.info("Attempting to resume training from the last checkpoint...")
|
| 501 |
+
|
| 502 |
+
trainer.train(resume_from_checkpoint=True)
|
| 503 |
+
except Exception as err:
|
| 504 |
+
trainer.train()
|
| 505 |
+
|
| 506 |
+
# Finish the Weights & Biases run.
|
| 507 |
+
wandb.finish()
|
| 508 |
+
|
| 509 |
+
logger.success("Training completed successfully.")
|
| 510 |
+
```
|
| 511 |
+
---
|
| 512 |
+
|
| 513 |
+
## Citation
|
| 514 |
+
|
| 515 |
+
BibTeX:
|
| 516 |
+
|
| 517 |
+
```bibtex
|
| 518 |
+
@misc{indictextaudio2025,
|
| 519 |
+
title={snorTTS-Indic-v0: Multilingual Indic TTS},
|
| 520 |
+
author={snorbyte},
|
| 521 |
+
year={2025},
|
| 522 |
+
howpublished={\url{snorbyte/snorTTS-Indic-v0}},
|
| 523 |
+
note={Apache-2.0}
|
| 524 |
+
}
|
| 525 |
+
```
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{{- bos_token }}
|
| 2 |
+
{%- if custom_tools is defined %}
|
| 3 |
+
{%- set tools = custom_tools %}
|
| 4 |
+
{%- endif %}
|
| 5 |
+
{%- if not tools_in_user_message is defined %}
|
| 6 |
+
{%- set tools_in_user_message = true %}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{%- if not date_string is defined %}
|
| 9 |
+
{%- if strftime_now is defined %}
|
| 10 |
+
{%- set date_string = strftime_now("%d %b %Y") %}
|
| 11 |
+
{%- else %}
|
| 12 |
+
{%- set date_string = "26 Jul 2024" %}
|
| 13 |
+
{%- endif %}
|
| 14 |
+
{%- endif %}
|
| 15 |
+
{%- if not tools is defined %}
|
| 16 |
+
{%- set tools = none %}
|
| 17 |
+
{%- endif %}
|
| 18 |
+
|
| 19 |
+
{#- This block extracts the system message, so we can slot it into the right place. #}
|
| 20 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 21 |
+
{%- set system_message = messages[0]['content']|trim %}
|
| 22 |
+
{%- set messages = messages[1:] %}
|
| 23 |
+
{%- else %}
|
| 24 |
+
{%- set system_message = "" %}
|
| 25 |
+
{%- endif %}
|
| 26 |
+
|
| 27 |
+
{#- System message #}
|
| 28 |
+
{{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
|
| 29 |
+
{%- if tools is not none %}
|
| 30 |
+
{{- "Environment: ipython\n" }}
|
| 31 |
+
{%- endif %}
|
| 32 |
+
{{- "Cutting Knowledge Date: December 2023\n" }}
|
| 33 |
+
{{- "Today Date: " + date_string + "\n\n" }}
|
| 34 |
+
{%- if tools is not none and not tools_in_user_message %}
|
| 35 |
+
{{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
|
| 36 |
+
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
|
| 37 |
+
{{- "Do not use variables.\n\n" }}
|
| 38 |
+
{%- for t in tools %}
|
| 39 |
+
{{- t | tojson(indent=4) }}
|
| 40 |
+
{{- "\n\n" }}
|
| 41 |
+
{%- endfor %}
|
| 42 |
+
{%- endif %}
|
| 43 |
+
{{- system_message }}
|
| 44 |
+
{{- "<|eot_id|>" }}
|
| 45 |
+
|
| 46 |
+
{#- Custom tools are passed in a user message with some extra guidance #}
|
| 47 |
+
{%- if tools_in_user_message and not tools is none %}
|
| 48 |
+
{#- Extract the first user message so we can plug it in here #}
|
| 49 |
+
{%- if messages | length != 0 %}
|
| 50 |
+
{%- set first_user_message = messages[0]['content']|trim %}
|
| 51 |
+
{%- set messages = messages[1:] %}
|
| 52 |
+
{%- else %}
|
| 53 |
+
{{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
|
| 54 |
+
{%- endif %}
|
| 55 |
+
{{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
|
| 56 |
+
{{- "Given the following functions, please respond with a JSON for a function call " }}
|
| 57 |
+
{{- "with its proper arguments that best answers the given prompt.\n\n" }}
|
| 58 |
+
{{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
|
| 59 |
+
{{- "Do not use variables.\n\n" }}
|
| 60 |
+
{%- for t in tools %}
|
| 61 |
+
{{- t | tojson(indent=4) }}
|
| 62 |
+
{{- "\n\n" }}
|
| 63 |
+
{%- endfor %}
|
| 64 |
+
{{- first_user_message + "<|eot_id|>"}}
|
| 65 |
+
{%- endif %}
|
| 66 |
+
|
| 67 |
+
{%- for message in messages %}
|
| 68 |
+
{%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
|
| 69 |
+
{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
|
| 70 |
+
{%- elif 'tool_calls' in message %}
|
| 71 |
+
{%- if not message.tool_calls|length == 1 %}
|
| 72 |
+
{{- raise_exception("This model only supports single tool-calls at once!") }}
|
| 73 |
+
{%- endif %}
|
| 74 |
+
{%- set tool_call = message.tool_calls[0].function %}
|
| 75 |
+
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
|
| 76 |
+
{{- '{"name": "' + tool_call.name + '", ' }}
|
| 77 |
+
{{- '"parameters": ' }}
|
| 78 |
+
{{- tool_call.arguments | tojson }}
|
| 79 |
+
{{- "}" }}
|
| 80 |
+
{{- "<|eot_id|>" }}
|
| 81 |
+
{%- elif message.role == "tool" or message.role == "ipython" %}
|
| 82 |
+
{{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
|
| 83 |
+
{%- if message.content is mapping or message.content is iterable %}
|
| 84 |
+
{{- message.content | tojson }}
|
| 85 |
+
{%- else %}
|
| 86 |
+
{{- message.content }}
|
| 87 |
+
{%- endif %}
|
| 88 |
+
{{- "<|eot_id|>" }}
|
| 89 |
+
{%- endif %}
|
| 90 |
+
{%- endfor %}
|
| 91 |
+
{%- if add_generation_prompt %}
|
| 92 |
+
{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
|
| 93 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"LlamaForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 128000,
|
| 8 |
+
"eos_token_id": 128001,
|
| 9 |
+
"head_dim": 128,
|
| 10 |
+
"hidden_act": "silu",
|
| 11 |
+
"hidden_size": 3072,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 8192,
|
| 14 |
+
"max_position_embeddings": 131072,
|
| 15 |
+
"mlp_bias": false,
|
| 16 |
+
"model_type": "llama",
|
| 17 |
+
"num_attention_heads": 24,
|
| 18 |
+
"num_hidden_layers": 28,
|
| 19 |
+
"num_key_value_heads": 8,
|
| 20 |
+
"pad_token_id": 128004,
|
| 21 |
+
"pretraining_tp": 1,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"rope_scaling": {
|
| 24 |
+
"factor": 32.0,
|
| 25 |
+
"high_freq_factor": 4.0,
|
| 26 |
+
"low_freq_factor": 1.0,
|
| 27 |
+
"original_max_position_embeddings": 8192,
|
| 28 |
+
"rope_type": "llama3"
|
| 29 |
+
},
|
| 30 |
+
"rope_theta": 500000.0,
|
| 31 |
+
"tie_word_embeddings": true,
|
| 32 |
+
"torch_dtype": "bfloat16",
|
| 33 |
+
"transformers_version": "4.53.1",
|
| 34 |
+
"unsloth_version": "2025.6.12",
|
| 35 |
+
"use_cache": true,
|
| 36 |
+
"vocab_size": 156940
|
| 37 |
+
}
|
generation_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 128000,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": 128001,
|
| 6 |
+
"max_length": 131072,
|
| 7 |
+
"pad_token_id": 128004,
|
| 8 |
+
"temperature": 0.6,
|
| 9 |
+
"top_p": 0.9,
|
| 10 |
+
"transformers_version": "4.53.1"
|
| 11 |
+
}
|
model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3df5ddcdf658979751c511457760629635b59a74268a968c3f984da836a75b2
|
| 3 |
+
size 3438608176
|
model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eec4f6982f07ae393c3b8891190530de25916db7c8ba0a6e4c91d47e3afe480b
|
| 3 |
+
size 2466558064
|
model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2157d2c55bd9948478f99016bd6b2cee9770ca1d950ba8924e9f2aea5161c836
|
| 3 |
+
size 1661186464
|
model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b999ed243b570750bc19b4fd3d513664e8552a38d79ed29439dfee7ecb346a36
|
| 3 |
+
size 1928478848
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 15131947008
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 198 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 199 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 200 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 201 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 202 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 203 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 204 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 205 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 206 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 207 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 208 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 209 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 210 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 211 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 212 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 213 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 214 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 215 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 216 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 217 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 218 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 219 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 220 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 221 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 222 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 223 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 224 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 225 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 226 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 227 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 228 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 229 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 230 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 231 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 232 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 233 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 234 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 235 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 236 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 237 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 238 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 239 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 240 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 241 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 242 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 243 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 244 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 245 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 246 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 247 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 248 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 249 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 250 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 251 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 252 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 253 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 254 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 255 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 256 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 257 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 258 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 259 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 260 |
+
"model.norm.weight": "model-00003-of-00004.safetensors"
|
| 261 |
+
}
|
| 262 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|audio|>"
|
| 4 |
+
],
|
| 5 |
+
"bos_token": {
|
| 6 |
+
"content": "<|begin_of_text|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"eos_token": {
|
| 13 |
+
"content": "<|eot_id|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false
|
| 18 |
+
},
|
| 19 |
+
"pad_token": "<custom_token_7>"
|
| 20 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:044e2a10201774018db120391980464472baabf223bd353cea49b17da0b66abc
|
| 3 |
+
size 22849546
|
tokenizer_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|