Upload UNetMSS3D
Browse files- UNetConfigs.py +30 -0
- UNets.py +26 -0
- config.json +16 -0
- model.safetensors +3 -0
- unet3d.py +310 -0
UNetConfigs.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
class UNet3DConfig(PretrainedConfig):
|
| 5 |
+
model_type = "UNet"
|
| 6 |
+
def __init__(
|
| 7 |
+
self,
|
| 8 |
+
in_ch=1,
|
| 9 |
+
out_ch=1,
|
| 10 |
+
init_features=64,
|
| 11 |
+
**kwargs):
|
| 12 |
+
self.in_ch = in_ch
|
| 13 |
+
self.out_ch = out_ch
|
| 14 |
+
self.init_features = init_features
|
| 15 |
+
super().__init__(**kwargs)
|
| 16 |
+
|
| 17 |
+
class UNetMSS3DConfig(PretrainedConfig):
|
| 18 |
+
model_type = "UNetMSS"
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
in_ch=1,
|
| 22 |
+
out_ch=1,
|
| 23 |
+
output_dir=None,
|
| 24 |
+
init_features=64,
|
| 25 |
+
**kwargs):
|
| 26 |
+
self.in_ch = in_ch
|
| 27 |
+
self.out_ch = out_ch
|
| 28 |
+
self.output_dir = output_dir
|
| 29 |
+
self.init_features = init_features
|
| 30 |
+
super().__init__(**kwargs)
|
UNets.py
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PreTrainedModel
|
| 2 |
+
from .unet3d import U_Net, U_Net_DeepSup
|
| 3 |
+
from .UNetConfigs import UNet3DConfig, UNetMSS3DConfig
|
| 4 |
+
|
| 5 |
+
class UNet3D(PreTrainedModel):
|
| 6 |
+
config_class = UNet3DConfig
|
| 7 |
+
def __init__(self, config):
|
| 8 |
+
super().__init__(config)
|
| 9 |
+
self.model = U_Net(
|
| 10 |
+
in_ch=config.in_ch,
|
| 11 |
+
out_ch=config.out_ch,
|
| 12 |
+
init_features=config.init_features)
|
| 13 |
+
def forward(self, x):
|
| 14 |
+
return self.model(x)
|
| 15 |
+
|
| 16 |
+
class UNetMSS3D(PreTrainedModel):
|
| 17 |
+
config_class = UNetMSS3DConfig
|
| 18 |
+
def __init__(self, config):
|
| 19 |
+
super().__init__(config)
|
| 20 |
+
self.model = U_Net_DeepSup(
|
| 21 |
+
in_ch=config.in_ch,
|
| 22 |
+
out_ch=config.out_ch,
|
| 23 |
+
output_dir=config.output_dir,
|
| 24 |
+
init_features=config.init_features)
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
return self.model(x)
|
config.json
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"UNetMSS3D"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "UNetConfigs.UNetMSS3DConfig",
|
| 7 |
+
"AutoModel": "UNets.UNetMSS3D"
|
| 8 |
+
},
|
| 9 |
+
"in_ch": 1,
|
| 10 |
+
"init_features": 64,
|
| 11 |
+
"model_type": "UNetMSS",
|
| 12 |
+
"out_ch": 1,
|
| 13 |
+
"output_dir": null,
|
| 14 |
+
"torch_dtype": "float32",
|
| 15 |
+
"transformers_version": "4.44.2"
|
| 16 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:563f50ace879ccd7ac1846a2d6aa66cf9471a5243d5dbcdc8d0cb1196a465063
|
| 3 |
+
size 414260220
|
unet3d.py
ADDED
|
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# from __future__ import print_function, division
|
| 4 |
+
'''
|
| 5 |
+
|
| 6 |
+
This script is from the DS6 (https://github.com/soumickmj/DS6/blob/main/Models/unet3d.py),
|
| 7 |
+
and then the SPOCKMIP repository (https://github.com/soumickmj/SPOCKMIP/blob/master/Models/unet3d.py)
|
| 8 |
+
|
| 9 |
+
Part of the DS6 paper:
|
| 10 |
+
"DS6, Deformation-Aware Semi-Supervised Learning: Application to Small Vessel Segmentation with Noisy Training Data"
|
| 11 |
+
(https://doi.org/10.3390/jimaging8100259)
|
| 12 |
+
|
| 13 |
+
and the SPOCKMIP paper:
|
| 14 |
+
"SPOCKMIP: Segmentation of Vessels in MRAs with Enhanced Continuity using Maximum Intensity Projection as Loss"
|
| 15 |
+
(https://doi.org/10.48550/arXiv.2407.08655)
|
| 16 |
+
|
| 17 |
+
'''
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
import torch.nn as nn
|
| 22 |
+
import torch.utils.data
|
| 23 |
+
import os
|
| 24 |
+
|
| 25 |
+
__author__ = "Kartik Prabhu, Mahantesh Pattadkal, and Soumick Chatterjee"
|
| 26 |
+
__copyright__ = "Copyright 2020, Faculty of Computer Science, Otto von Guericke University Magdeburg, Germany"
|
| 27 |
+
__credits__ = ["Kartik Prabhu", "Mahantesh Pattadkal", "Soumick Chatterjee"]
|
| 28 |
+
__license__ = "GPL"
|
| 29 |
+
__version__ = "1.0.0"
|
| 30 |
+
__maintainer__ = "Soumick Chatterjee"
|
| 31 |
+
__email__ = "[email protected]"
|
| 32 |
+
__status__ = "Production"
|
| 33 |
+
|
| 34 |
+
class conv_block(nn.Module):
|
| 35 |
+
"""
|
| 36 |
+
Convolution Block
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
| 40 |
+
super(conv_block, self).__init__()
|
| 41 |
+
self.conv = nn.Sequential(
|
| 42 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
|
| 43 |
+
stride=stride, padding=padding, bias=bias),
|
| 44 |
+
nn.BatchNorm3d(num_features=out_channels),
|
| 45 |
+
nn.LeakyReLU(inplace=True),
|
| 46 |
+
nn.Conv3d(in_channels=out_channels, out_channels=out_channels, kernel_size=k_size,
|
| 47 |
+
stride=stride, padding=padding, bias=bias),
|
| 48 |
+
nn.BatchNorm3d(num_features=out_channels),
|
| 49 |
+
nn.LeakyReLU(inplace=True)
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
x = self.conv(x)
|
| 54 |
+
return x
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class up_conv(nn.Module):
|
| 58 |
+
"""
|
| 59 |
+
Up Convolution Block
|
| 60 |
+
"""
|
| 61 |
+
|
| 62 |
+
# def __init__(self, in_ch, out_ch):
|
| 63 |
+
def __init__(self, in_channels, out_channels, k_size=3, stride=1, padding=1, bias=True):
|
| 64 |
+
super(up_conv, self).__init__()
|
| 65 |
+
self.up = nn.Sequential(
|
| 66 |
+
nn.Upsample(scale_factor=2),
|
| 67 |
+
nn.Conv3d(in_channels=in_channels, out_channels=out_channels, kernel_size=k_size,
|
| 68 |
+
stride=stride, padding=padding, bias=bias),
|
| 69 |
+
nn.BatchNorm3d(num_features=out_channels),
|
| 70 |
+
nn.LeakyReLU(inplace=True))
|
| 71 |
+
|
| 72 |
+
def forward(self, x):
|
| 73 |
+
x = self.up(x)
|
| 74 |
+
return x
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
class U_Net(nn.Module):
|
| 78 |
+
"""
|
| 79 |
+
UNet - Basic Implementation
|
| 80 |
+
Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width].
|
| 81 |
+
Paper : https://arxiv.org/abs/1505.04597
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(self, in_ch=1, out_ch=1, init_features=64):
|
| 85 |
+
super(U_Net, self).__init__()
|
| 86 |
+
|
| 87 |
+
n1 = init_features
|
| 88 |
+
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] # 64,128,256,512,1024
|
| 89 |
+
|
| 90 |
+
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 91 |
+
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 92 |
+
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 93 |
+
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 94 |
+
|
| 95 |
+
self.Conv1 = conv_block(in_ch, filters[0])
|
| 96 |
+
self.Conv2 = conv_block(filters[0], filters[1])
|
| 97 |
+
self.Conv3 = conv_block(filters[1], filters[2])
|
| 98 |
+
self.Conv4 = conv_block(filters[2], filters[3])
|
| 99 |
+
self.Conv5 = conv_block(filters[3], filters[4])
|
| 100 |
+
|
| 101 |
+
self.Up5 = up_conv(filters[4], filters[3])
|
| 102 |
+
self.Up_conv5 = conv_block(filters[4], filters[3])
|
| 103 |
+
|
| 104 |
+
self.Up4 = up_conv(filters[3], filters[2])
|
| 105 |
+
self.Up_conv4 = conv_block(filters[3], filters[2])
|
| 106 |
+
|
| 107 |
+
self.Up3 = up_conv(filters[2], filters[1])
|
| 108 |
+
self.Up_conv3 = conv_block(filters[2], filters[1])
|
| 109 |
+
|
| 110 |
+
self.Up2 = up_conv(filters[1], filters[0])
|
| 111 |
+
self.Up_conv2 = conv_block(filters[1], filters[0])
|
| 112 |
+
|
| 113 |
+
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
|
| 114 |
+
|
| 115 |
+
# self.active = torch.nn.Sigmoid()
|
| 116 |
+
|
| 117 |
+
def forward(self, x):
|
| 118 |
+
# print("unet")
|
| 119 |
+
# print(x.shape)
|
| 120 |
+
# print(padded.shape)
|
| 121 |
+
|
| 122 |
+
e1 = self.Conv1(x)
|
| 123 |
+
# print("conv1:")
|
| 124 |
+
# print(e1.shape)
|
| 125 |
+
|
| 126 |
+
e2 = self.Maxpool1(e1)
|
| 127 |
+
e2 = self.Conv2(e2)
|
| 128 |
+
# print("conv2:")
|
| 129 |
+
# print(e2.shape)
|
| 130 |
+
|
| 131 |
+
e3 = self.Maxpool2(e2)
|
| 132 |
+
e3 = self.Conv3(e3)
|
| 133 |
+
# print("conv3:")
|
| 134 |
+
# print(e3.shape)
|
| 135 |
+
|
| 136 |
+
e4 = self.Maxpool3(e3)
|
| 137 |
+
e4 = self.Conv4(e4)
|
| 138 |
+
# print("conv4:")
|
| 139 |
+
# print(e4.shape)
|
| 140 |
+
|
| 141 |
+
e5 = self.Maxpool4(e4)
|
| 142 |
+
e5 = self.Conv5(e5)
|
| 143 |
+
# print("conv5:")
|
| 144 |
+
# print(e5.shape)
|
| 145 |
+
|
| 146 |
+
d5 = self.Up5(e5)
|
| 147 |
+
# print("d5:")
|
| 148 |
+
# print(d5.shape)
|
| 149 |
+
# print("e4:")
|
| 150 |
+
# print(e4.shape)
|
| 151 |
+
d5 = torch.cat((e4, d5), dim=1)
|
| 152 |
+
d5 = self.Up_conv5(d5)
|
| 153 |
+
# print("upconv5:")
|
| 154 |
+
# print(d5.size)
|
| 155 |
+
|
| 156 |
+
d4 = self.Up4(d5)
|
| 157 |
+
# print("d4:")
|
| 158 |
+
# print(d4.shape)
|
| 159 |
+
d4 = torch.cat((e3, d4), dim=1)
|
| 160 |
+
d4 = self.Up_conv4(d4)
|
| 161 |
+
# print("upconv4:")
|
| 162 |
+
# print(d4.shape)
|
| 163 |
+
d3 = self.Up3(d4)
|
| 164 |
+
d3 = torch.cat((e2, d3), dim=1)
|
| 165 |
+
d3 = self.Up_conv3(d3)
|
| 166 |
+
# print("upconv3:")
|
| 167 |
+
# print(d3.shape)
|
| 168 |
+
d2 = self.Up2(d3)
|
| 169 |
+
d2 = torch.cat((e1, d2), dim=1)
|
| 170 |
+
d2 = self.Up_conv2(d2)
|
| 171 |
+
# print("upconv2:")
|
| 172 |
+
# print(d2.shape)
|
| 173 |
+
out = self.Conv(d2)
|
| 174 |
+
# print("out:")
|
| 175 |
+
# print(out.shape)
|
| 176 |
+
# d1 = self.active(out)
|
| 177 |
+
|
| 178 |
+
return [out]
|
| 179 |
+
|
| 180 |
+
class U_Net_DeepSup(nn.Module):
|
| 181 |
+
"""
|
| 182 |
+
UNet - Basic Implementation
|
| 183 |
+
Input _ [batch * channel(# of channels of each image) * depth(# of frames) * height * width].
|
| 184 |
+
Paper : https://arxiv.org/abs/1505.04597
|
| 185 |
+
"""
|
| 186 |
+
|
| 187 |
+
def __init__(self, in_ch=1, out_ch=1, output_dir=None, init_features=64):
|
| 188 |
+
super(U_Net_DeepSup, self).__init__()
|
| 189 |
+
|
| 190 |
+
self.output_dir = output_dir
|
| 191 |
+
n1 = init_features
|
| 192 |
+
filters = [n1, n1 * 2, n1 * 4, n1 * 8, n1 * 16] # 64,128,256,512,1024
|
| 193 |
+
|
| 194 |
+
self.Maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 195 |
+
self.Maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 196 |
+
self.Maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 197 |
+
self.Maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2)
|
| 198 |
+
|
| 199 |
+
self.Conv1 = conv_block(in_ch, filters[0])
|
| 200 |
+
self.Conv2 = conv_block(filters[0], filters[1])
|
| 201 |
+
self.Conv3 = conv_block(filters[1], filters[2])
|
| 202 |
+
self.Conv4 = conv_block(filters[2], filters[3])
|
| 203 |
+
self.Conv5 = conv_block(filters[3], filters[4])
|
| 204 |
+
|
| 205 |
+
#1x1x1 Convolution for Deep Supervision
|
| 206 |
+
self.Conv_d3 = conv_block(filters[1], 1)
|
| 207 |
+
self.Conv_d4 = conv_block(filters[2], 1)
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
self.Up5 = up_conv(filters[4], filters[3])
|
| 212 |
+
self.Up_conv5 = conv_block(filters[4], filters[3])
|
| 213 |
+
|
| 214 |
+
self.Up4 = up_conv(filters[3], filters[2])
|
| 215 |
+
self.Up_conv4 = conv_block(filters[3], filters[2])
|
| 216 |
+
|
| 217 |
+
self.Up3 = up_conv(filters[2], filters[1])
|
| 218 |
+
self.Up_conv3 = conv_block(filters[2], filters[1])
|
| 219 |
+
|
| 220 |
+
self.Up2 = up_conv(filters[1], filters[0])
|
| 221 |
+
self.Up_conv2 = conv_block(filters[1], filters[0])
|
| 222 |
+
|
| 223 |
+
self.Conv = nn.Conv3d(filters[0], out_ch, kernel_size=1, stride=1, padding=0)
|
| 224 |
+
|
| 225 |
+
for submodule in self.modules():
|
| 226 |
+
submodule.register_forward_hook(self.nan_hook)
|
| 227 |
+
|
| 228 |
+
# self.active = torch.nn.Sigmoid()
|
| 229 |
+
|
| 230 |
+
def nan_hook(self, module, inp, output):
|
| 231 |
+
for i, out in enumerate(output):
|
| 232 |
+
nan_mask = torch.isnan(out)
|
| 233 |
+
if nan_mask.any():
|
| 234 |
+
print("In", self.__class__.__name__)
|
| 235 |
+
torch.save(inp, os.path.join(self.output_dir, 'nan_values_ip.pt'))
|
| 236 |
+
module_params = module.named_parameters()
|
| 237 |
+
for name, param in module_params:
|
| 238 |
+
torch.save(param, os.path.join(self.output_dir, 'nan_{}_param.pt'.format(name)))
|
| 239 |
+
torch.save(self.input_to_net, os.path.join(self.output_dir, 'nan_ip_batch.pt'))
|
| 240 |
+
raise RuntimeError(" classname "+self.__class__.__name__+"i "+str(i)+f" module: {module} classname {self.__class__.__name__} Found NAN in output {i} at indices: ", nan_mask.nonzero(), "where:", out[nan_mask.nonzero()[:, 0].unique(sorted=True)])
|
| 241 |
+
|
| 242 |
+
def forward(self, x):
|
| 243 |
+
# print("unet")
|
| 244 |
+
# print(x.shape)
|
| 245 |
+
# print(padded.shape)
|
| 246 |
+
self.input_to_net = x
|
| 247 |
+
e1 = self.Conv1(x)
|
| 248 |
+
# print("conv1:")
|
| 249 |
+
# print(e1.shape)
|
| 250 |
+
|
| 251 |
+
e2 = self.Maxpool1(e1)
|
| 252 |
+
e2 = self.Conv2(e2)
|
| 253 |
+
# print("conv2:")
|
| 254 |
+
# print(e2.shape)
|
| 255 |
+
|
| 256 |
+
e3 = self.Maxpool2(e2)
|
| 257 |
+
e3 = self.Conv3(e3)
|
| 258 |
+
# print("conv3:")
|
| 259 |
+
# print(e3.shape)
|
| 260 |
+
|
| 261 |
+
e4 = self.Maxpool3(e3)
|
| 262 |
+
e4 = self.Conv4(e4)
|
| 263 |
+
# print("conv4:")
|
| 264 |
+
# print(e4.shape)
|
| 265 |
+
|
| 266 |
+
e5 = self.Maxpool4(e4)
|
| 267 |
+
e5 = self.Conv5(e5)
|
| 268 |
+
# print("conv5:")
|
| 269 |
+
# print(e5.shape)
|
| 270 |
+
|
| 271 |
+
d5 = self.Up5(e5)
|
| 272 |
+
# print("d5:")
|
| 273 |
+
# print(d5.shape)
|
| 274 |
+
# print("e4:")
|
| 275 |
+
# print(e4.shape)
|
| 276 |
+
d5 = torch.cat((e4, d5), dim=1)
|
| 277 |
+
d5 = self.Up_conv5(d5)
|
| 278 |
+
# print("upconv5:")
|
| 279 |
+
# print(d5.size)
|
| 280 |
+
|
| 281 |
+
d4 = self.Up4(d5)
|
| 282 |
+
# print("d4:")
|
| 283 |
+
# print(d4.shape)
|
| 284 |
+
d4 = torch.cat((e3, d4), dim=1)
|
| 285 |
+
d4 = self.Up_conv4(d4)
|
| 286 |
+
d4_out = self.Conv_d4(d4)
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
# print("upconv4:")
|
| 290 |
+
# print(d4.shape)
|
| 291 |
+
d3 = self.Up3(d4)
|
| 292 |
+
d3 = torch.cat((e2, d3), dim=1)
|
| 293 |
+
d3 = self.Up_conv3(d3)
|
| 294 |
+
d3_out = self.Conv_d3(d3)
|
| 295 |
+
|
| 296 |
+
# print("upconv3:")
|
| 297 |
+
# print(d3.shape)
|
| 298 |
+
d2 = self.Up2(d3)
|
| 299 |
+
d2 = torch.cat((e1, d2), dim=1)
|
| 300 |
+
d2 = self.Up_conv2(d2)
|
| 301 |
+
# print("upconv2:")
|
| 302 |
+
# print(d2.shape)
|
| 303 |
+
out = self.Conv(d2)
|
| 304 |
+
# print("out:")
|
| 305 |
+
# print(out.shape)
|
| 306 |
+
# d1 = self.active(out)
|
| 307 |
+
|
| 308 |
+
return [out, d3_out , d4_out]
|
| 309 |
+
|
| 310 |
+
|