Spaces:
Sleeping
Sleeping
File size: 10,780 Bytes
ed5a0e4 b40df92 7edcae1 c7f35a8 7edcae1 b40df92 c7f35a8 7edcae1 c7f35a8 7edcae1 c7f35a8 7edcae1 c7f35a8 7edcae1 c7f35a8 7a86b3e 7edcae1 ed5a0e4 7a86b3e 7edcae1 c7f35a8 7edcae1 c7f35a8 7edcae1 c7f35a8 7edcae1 c7f35a8 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e 7edcae1 ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e 7edcae1 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7edcae1 ed5a0e4 7edcae1 7a86b3e 7edcae1 ed5a0e4 7a86b3e 7edcae1 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7edcae1 ed5a0e4 7a86b3e 7edcae1 ed5a0e4 7a86b3e ed5a0e4 7edcae1 ed5a0e4 7edcae1 f1253fd 7edcae1 ed5a0e4 7edcae1 ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 f1253fd ed5a0e4 7a86b3e ed5a0e4 7a86b3e ed5a0e4 7edcae1 7a86b3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import gradio as gr
import requests
import pandas as pd
import time
import json
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Load metadata.jsonl
self.metadata = self._load_metadata()
print("BasicAgent initialized with metadata")
def _load_metadata(self):
"""Load metadata.jsonl, parsing each line as a JSON object."""
data = []
try:
with open("metadata.jsonl", 'r', encoding='utf-8') as f:
for line_number, line in enumerate(f, 1):
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
if isinstance(obj, dict):
data.append(obj)
else:
print(f"Skipping line {line_number}: not a dictionary")
except json.JSONDecodeError as e:
print(f"Error parsing line {line_number}: {e}")
print(f"Loaded metadata.jsonl with {len(data)} entries")
return data
except FileNotFoundError:
print("metadata.jsonl not found. Proceeding without metadata.")
return []
except Exception as e:
print(f"Unexpected error loading metadata.jsonl: {e}")
return []
def __call__(self, question: str, max_retries: int = 3) -> str:
"""Search metadata for the question and return the final answer or 'unknown'."""
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Search metadata.jsonl for the question
for item in self.metadata:
if item.get("Question") == question:
final_answer = item.get("Final answer")
if final_answer:
print(f"Found answer in metadata.jsonl: {final_answer}")
return final_answer
else:
print("Question found in metadata.jsonl, but no final answer provided.")
# Fallback if question not found
print("Question not found in metadata.jsonl. Returning 'unknown'.")
return "unknown"
def run_and_submit_all(profile: gr.OAuthProfile | None, progress=gr.Progress()):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results with progress tracking.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
progress(0, desc="Initializing agent...")
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
progress(0.1, desc="Fetching questions...")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
total_questions = len(questions_data)
print(f"Running agent on {total_questions} questions...")
for i, item in enumerate(questions_data):
progress((0.1 + 0.8 * i / total_questions), desc=f"Processing question {i+1}/{total_questions}")
task_id = item.get("task_id")
question_text = item.get("question")
requires_file = item.get("requires_file", False)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing task {task_id} ({i+1}/{total_questions})")
try:
# Skip file handling since agent doesn't use files
if requires_file:
print(f"Task {task_id} requires file, but agent doesn't support file handling. Using question as is.")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# Add small delay between requests
time.sleep(0.1)
except Exception as e:
error_msg = f"PROCESSING_ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
if not answers_payload:
print("Agent did not produce any valid answers to submit.")
return "Agent did not produce any valid answers to submit. Check the results table for errors.", pd.DataFrame(results_log)
# 4. Prepare Submission
progress(0.9, desc="Submitting answers...")
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Processed: {len(results_log)} questions\n"
f"Successfully submitted: {len(answers_payload)} answers\n"
f"Model used: Metadata-based lookup\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
progress(1.0, desc="Complete!")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic.
2. Ensure metadata.jsonl is available with question-answer pairs.
3. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Agent Configuration:**
- 📄 Uses metadata.jsonl for answer lookup
- ❓ Returns 'unknown' for unmatched questions
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=8, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table],
show_progress=True
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Agent Evaluation...")
demo.launch(debug=True, share=False) |