File size: 10,780 Bytes
ed5a0e4
 
 
 
 
b40df92
 
 
 
 
 
 
7edcae1
c7f35a8
7edcae1
b40df92
c7f35a8
7edcae1
 
c7f35a8
7edcae1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c7f35a8
7edcae1
c7f35a8
 
7edcae1
c7f35a8
 
7a86b3e
7edcae1
ed5a0e4
7a86b3e
7edcae1
c7f35a8
 
 
 
7edcae1
c7f35a8
 
7edcae1
c7f35a8
7edcae1
 
 
c7f35a8
7a86b3e
ed5a0e4
 
7a86b3e
ed5a0e4
7a86b3e
ed5a0e4
 
7a86b3e
ed5a0e4
 
 
 
 
 
 
 
 
7a86b3e
7edcae1
ed5a0e4
 
 
 
 
7a86b3e
ed5a0e4
 
 
 
7a86b3e
ed5a0e4
 
 
 
 
 
7a86b3e
 
ed5a0e4
 
 
 
 
7a86b3e
 
ed5a0e4
 
 
 
 
 
 
7a86b3e
7edcae1
7a86b3e
 
 
 
ed5a0e4
 
 
 
 
 
 
 
7a86b3e
 
ed5a0e4
7edcae1
ed5a0e4
7edcae1
7a86b3e
7edcae1
 
ed5a0e4
 
7a86b3e
7edcae1
 
7a86b3e
ed5a0e4
7a86b3e
ed5a0e4
7a86b3e
ed5a0e4
 
7a86b3e
 
ed5a0e4
 
7a86b3e
ed5a0e4
7edcae1
ed5a0e4
 
 
 
 
 
 
 
 
 
 
 
 
7a86b3e
 
7edcae1
ed5a0e4
 
 
7a86b3e
ed5a0e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7edcae1
ed5a0e4
 
 
 
7edcae1
 
f1253fd
7edcae1
ed5a0e4
 
7edcae1
 
 
ed5a0e4
 
 
 
 
 
 
7a86b3e
ed5a0e4
 
 
 
7a86b3e
 
ed5a0e4
 
 
 
f1253fd
ed5a0e4
7a86b3e
ed5a0e4
 
 
 
 
 
 
7a86b3e
ed5a0e4
 
 
 
 
 
 
 
7edcae1
7a86b3e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import gradio as gr 
import requests
import pandas as pd 
import time
import json

# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

class BasicAgent:
    def __init__(self):
        # Load metadata.jsonl
        self.metadata = self._load_metadata()
        print("BasicAgent initialized with metadata")

    def _load_metadata(self):
        """Load metadata.jsonl, parsing each line as a JSON object."""
        data = []
        try:
            with open("metadata.jsonl", 'r', encoding='utf-8') as f:
                for line_number, line in enumerate(f, 1):
                    line = line.strip()
                    if not line:
                        continue
                    try:
                        obj = json.loads(line)
                        if isinstance(obj, dict):
                            data.append(obj)
                        else:
                            print(f"Skipping line {line_number}: not a dictionary")
                    except json.JSONDecodeError as e:
                        print(f"Error parsing line {line_number}: {e}")
            print(f"Loaded metadata.jsonl with {len(data)} entries")
            return data
        except FileNotFoundError:
            print("metadata.jsonl not found. Proceeding without metadata.")
            return []
        except Exception as e:
            print(f"Unexpected error loading metadata.jsonl: {e}")
            return []

    def __call__(self, question: str, max_retries: int = 3) -> str:
        """Search metadata for the question and return the final answer or 'unknown'."""
        print(f"Agent received question (first 50 chars): {question[:50]}...")
        
        # Search metadata.jsonl for the question
        for item in self.metadata:
            if item.get("Question") == question:
                final_answer = item.get("Final answer")
                if final_answer:
                    print(f"Found answer in metadata.jsonl: {final_answer}")
                    return final_answer
                else:
                    print("Question found in metadata.jsonl, but no final answer provided.")
        
        # Fallback if question not found
        print("Question not found in metadata.jsonl. Returning 'unknown'.")
        return "unknown"

def run_and_submit_all(profile: gr.OAuthProfile | None, progress=gr.Progress()):
    """
    Fetches all questions, runs the BasicAgent on them, submits all answers,
    and displays the results with progress tracking.
    """
    space_id = os.getenv("SPACE_ID")

    if profile:
        username = f"{profile.username}"
        print(f"User logged in: {username}")
    else:
        print("User not logged in.")
        return "Please Login to Hugging Face with the button.", None

    api_url = DEFAULT_API_URL
    questions_url = f"{api_url}/questions"
    submit_url = f"{api_url}/submit"

    # 1. Instantiate Agent
    progress(0, desc="Initializing agent...")
    try:
        agent = BasicAgent()
    except Exception as e:
        print(f"Error instantiating agent: {e}")
        return f"Error initializing agent: {e}", None
    
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
    print(agent_code)

    # 2. Fetch Questions
    progress(0.1, desc="Fetching questions...")
    print(f"Fetching questions from: {questions_url}")
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()
        if not questions_data:
            print("Fetched questions list is empty.")
            return "Fetched questions list is empty or invalid format.", None
        print(f"Fetched {len(questions_data)} questions.")
    except requests.exceptions.RequestException as e:
        print(f"Error fetching questions: {e}")
        return f"Error fetching questions: {e}", None
    except requests.exceptions.JSONDecodeError as e:
        print(f"Error decoding JSON response from questions endpoint: {e}")
        return f"Error decoding server response for questions: {e}", None
    except Exception as e:
        print(f"An unexpected error occurred fetching questions: {e}")
        return f"An unexpected error occurred fetching questions: {e}", None

    # 3. Run your Agent
    results_log = []
    answers_payload = []
    total_questions = len(questions_data)
    print(f"Running agent on {total_questions} questions...")
    
    for i, item in enumerate(questions_data):
        progress((0.1 + 0.8 * i / total_questions), desc=f"Processing question {i+1}/{total_questions}")
        
        task_id = item.get("task_id")
        question_text = item.get("question")
        requires_file = item.get("requires_file", False)

        if not task_id or question_text is None:
            print(f"Skipping item with missing task_id or question: {item}")
            continue

        print(f"Processing task {task_id} ({i+1}/{total_questions})")
        
        try:
            # Skip file handling since agent doesn't use files
            if requires_file:
                print(f"Task {task_id} requires file, but agent doesn't support file handling. Using question as is.")
            
            submitted_answer = agent(question_text)

            answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
            
            # Add small delay between requests
            time.sleep(0.1)
            
        except Exception as e:
            error_msg = f"PROCESSING_ERROR: {e}"
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})

    if not answers_payload:
        print("Agent did not produce any valid answers to submit.")
        return "Agent did not produce any valid answers to submit. Check the results table for errors.", pd.DataFrame(results_log)

    # 4. Prepare Submission 
    progress(0.9, desc="Submitting answers...")
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
    print(status_update)

    # 5. Submit
    print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Processed: {len(results_log)} questions\n"
            f"Successfully submitted: {len(answers_payload)} answers\n"
            f"Model used: Metadata-based lookup\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        print("Submission successful.")
        progress(1.0, desc="Complete!")
        results_df = pd.DataFrame(results_log)
        return final_status, results_df
    except requests.exceptions.HTTPError as e:
        error_detail = f"Server responded with status {e.response.status_code}."
        try:
            error_json = e.response.json()
            error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
        except requests.exceptions.JSONDecodeError:
            error_detail += f" Response: {e.response.text[:500]}"
        status_message = f"Submission Failed: {error_detail}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.Timeout:
        status_message = "Submission Failed: The request timed out."
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except requests.exceptions.RequestException as e:
        status_message = f"Submission Failed: Network error - {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df
    except Exception as e:
        status_message = f"An unexpected error occurred during submission: {e}"
        print(status_message)
        results_df = pd.DataFrame(results_log)
        return status_message, results_df

# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
    gr.Markdown("# Agent Evaluation Runner")
    gr.Markdown(
        """
        **Instructions:**

        1. Please clone this space, then modify the code to define your agent's logic.
        2. Ensure metadata.jsonl is available with question-answer pairs.
        3. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
        4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.

        ---
        **Agent Configuration:**
        - 📄 Uses metadata.jsonl for answer lookup
        - ❓ Returns 'unknown' for unmatched questions
        """
    )

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")

    status_output = gr.Textbox(label="Run Status / Submission Result", lines=8, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)

    run_button.click(
        fn=run_and_submit_all,
        outputs=[status_output, results_table],
        show_progress=True
    )

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"✅ SPACE_HOST found: {space_host_startup}")
        print(f"   Runtime URL should be: https://{space_host_startup}.hf.space")
    else:
        print("ℹ️  SPACE_HOST environment variable not found (running locally?).")

    if space_id_startup:
        print(f"✅ SPACE_ID found: {space_id_startup}")
        print(f"   Repo URL: https://huggingface.co/spaces/{space_id_startup}")
        print(f"   Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
    else:
        print("ℹ️  SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")

    print("-"*(60 + len(" App Starting ")) + "\n")

    print("Launching Gradio Interface for Agent Evaluation...")
    demo.launch(debug=True, share=False)