Spaces:
Configuration error
Configuration error
File size: 14,514 Bytes
96adaeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
python
#!/usr/bin/env python3
import os
import time
import json
import asyncio
import numpy as np
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
from tradingview_ta import TA_Handler, Interval
from ta.trend import MACD, EMAIndicator
from ta.momentum import RSIIndicator
from ta.volatility import BollingerBands
from ta.volatility import AverageTrueRange
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import load_model
# Load environment variables
load_dotenv()
class GoldenMaverick:
"""
AI-powered Gold (XAU/USD) Trading Bot with automated technical analysis and trade execution
"""
def __init__(self):
self.symbol = "XAUUSD"
self.exchange = "OANDA"
self.timeframe = Interval.INTERVAL_5_MINUTES
self.model_path = "models/gold_predictor.h5"
self.risk_per_trade = 0.02 # 2% risk per trade
self.take_profit_ratio = 2.0 # 1:2 risk-reward
self.trailing_stop_enabled = True
self.trailing_stop_distance = 0.0020 # 20 pips for XAU/USD
self.last_signal = None
self.account_balance = 10000 # Default, should be fetched from broker
self.load_ai_model()
def load_ai_model(self):
"""Load pre-trained AI model for market prediction"""
try:
self.model = load_model(self.model_path)
print("AI Model loaded successfully")
except Exception as e:
print(f"Error loading AI model: {e}")
self.model = None
async def fetch_market_data(self):
"""Fetch real-time market data from TradingView"""
while True:
try:
handler = TA_Handler(
symbol=self.symbol,
exchange=self.exchange,
screener="forex",
interval=self.timeframe,
timeout=10
)
analysis = handler.get_analysis()
self.current_price = analysis.indicators['close']
self.ohlc_data = {
'open': analysis.indicators['open'],
'high': analysis.indicators['high'],
'low': analysis.indicators['low'],
'close': self.current_price,
'volume': analysis.indicators['volume']
}
print(f"\n[{datetime.now()}] XAU/USD Price: {self.current_price:.2f}")
await self.analyze_market()
await asyncio.sleep(30) # Update every 30 seconds
except Exception as e:
print(f"Error fetching data: {e}")
await asyncio.sleep(60)
async def analyze_market(self):
"""Perform comprehensive technical analysis"""
# Load data into DataFrame
df = pd.DataFrame([self.ohlc_data])
# Calculate indicators
df = self.calculate_technical_indicators(df)
# AI-based prediction
ai_signal = await self.generate_ai_signal(df)
# Traditional TA signals
ta_signals = self.generate_ta_signals(df)
# Combine signals
final_signal = self.combine_signals(ai_signal, ta_signals)
# Execute trading logic
if final_signal['signal'] != 'WAIT':
await self.execute_trade(final_signal)
def calculate_technical_indicators(self, df):
"""Calculate all technical indicators"""
# Moving Averages
df['ema_20'] = EMAIndicator(df['close'], window=20).ema_indicator()
df['ema_50'] = EMAIndicator(df['close'], window=50).ema_indicator()
df['ema_200'] = EMAIndicator(df['close'], window=200).ema_indicator()
# Momentum Indicators
df['rsi'] = RSIIndicator(df['close'], window=14).rsi()
macd = MACD(df['close'], window_slow=26, window_fast=12, window_sign=9)
df['macd'] = macd.macd()
df['macd_signal'] = macd.macd_signal()
df['macd_diff'] = macd.macd_diff()
# Volatility Indicators
bb = BollingerBands(df['close'], window=20, window_dev=2)
df['bb_upper'] = bb.bollinger_hband()
df['bb_middle'] = bb.bollinger_mavg()
df['bb_lower'] = bb.bollinger_lband()
df['atr'] = AverageTrueRange(
high=df['high'],
low=df['low'],
close=df['close'],
window=14
).average_true_range()
return df
async def generate_ai_signal(self, df):
"""Generate signal using AI model"""
if not self.model:
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'AI Model not available'}
try:
# Prepare data for AI model
features = df[['close', 'ema_20', 'ema_50', 'rsi', 'macd', 'atr']].values
scaler = MinMaxScaler()
features_scaled = scaler.fit_transform(features)
features_scaled = np.reshape(features_scaled, (1, features_scaled.shape[0], features_scaled.shape[1]))
# Make prediction
prediction = self.model.predict(features_scaled)
confidence = np.max(prediction)
signal = np.argmax(prediction)
return {
'signal': 'BUY' if signal == 0 else 'SELL' if signal == 1 else 'WAIT',
'confidence': float(confidence),
'reason': 'AI Market Prediction'
}
except Exception as e:
print(f"AI Prediction Error: {e}")
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'Prediction Error'}
def generate_ta_signals(self, df):
"""Generate signals based on traditional technical analysis"""
signals = []
confidence = 0
reasons = []
# EMA Crossover Strategy
if df['ema_20'].iloc[-1] > df['ema_50'].iloc[-1] and df['ema_50'].iloc[-1] > df['ema_200'].iloc[-1]:
signals.append('BUY')
confidence += 0.3
reasons.append("Golden Cross (EMA 20 > 50 > 200)")
elif df['ema_20'].iloc[-1] < df['ema_50'].iloc[-1] and df['ema_50'].iloc[-1] < df['ema_200'].iloc[-1]:
signals.append('SELL')
confidence += 0.3
reasons.append("Death Cross (EMA 20 < 50 < 200)")
# RSI Analysis
if df['rsi'].iloc[-1] < 30:
signals.append('BUY')
confidence += 0.2
reasons.append("Oversold (RSI < 30)")
elif df['rsi'].iloc[-1] > 70:
signals.append('SELL')
confidence += 0.2
reasons.append("Overbought (RSI > 70)")
# MACD Analysis
if df['macd'].iloc[-1] > df['macd_signal'].iloc[-1] and df['macd'].iloc[-2] <= df['macd_signal'].iloc[-2]:
signals.append('BUY')
confidence += 0.2
reasons.append("MACD Bullish Crossover")
elif df['macd'].iloc[-1] < df['macd_signal'].iloc[-1] and df['macd'].iloc[-2] >= df['macd_signal'].iloc[-2]:
signals.append('SELL')
confidence += 0.2
reasons.append("MACD Bearish Crossover")
# Bollinger Bands Analysis
if df['close'].iloc[-1] < df['bb_lower'].iloc[-1]:
signals.append('BUY')
confidence += 0.1
reasons.append("Price at Lower Bollinger Band")
elif df['close'].iloc[-1] > df['bb_upper'].iloc[-1]:
signals.append('SELL')
confidence += 0.1
reasons.append("Price at Upper Bollinger Band")
# Determine final signal
if not signals:
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'No strong signals detected'}
# Count votes and determine primary signal
buy_count = signals.count('BUY')
sell_count = signals.count('SELL')
final_signal = 'BUY' if buy_count > sell_count else 'SELL' if sell_count > buy_count else 'WAIT'
return {
'signal': final_signal,
'confidence': min(confidence, 0.9), # Cap at 90% for TA alone
'reason': " | ".join(reasons)
}
def combine_signals(self, ai_signal, ta_signal):
"""Combine AI and traditional TA signals with weighted confidence"""
if ai_signal['signal'] == 'WAIT' and ta_signal['signal'] == 'WAIT':
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'No consensus'}
# Weighted combination (60% AI, 40% TA)
ai_weight = 0.6
ta_weight = 0.4
if ai_signal['signal'] == ta_signal['signal']:
combined_confidence = (ai_signal['confidence'] * ai_weight +
ta_signal['confidence'] * ta_weight)
return {
'signal': ai_signal['signal'],
'confidence': combined_confidence,
'reason': f"AI+TA Consensus: {ai_signal['reason']} & {ta_signal['reason']}"
}
else:
# When signals conflict, prefer AI with higher confidence
if ai_signal['confidence'] >= 0.7:
return ai_signal
elif ta_signal['confidence'] >= 0.7:
return ta_signal
else:
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'Conflicting signals'}
async def execute_trade(self, signal):
"""Execute trade based on generated signal"""
# Check if this is a new signal
if self.last_signal == signal['signal']:
print(f"Maintaining existing {signal['signal']} position")
return
print(f"\nπ Executing {signal['signal']} Signal π")
print(f"Confidence: {signal['confidence']*100:.1f}%")
print(f"Reason: {signal['reason']}")
print(f"Current Price: {self.current_price:.2f}")
# Calculate position size and risk parameters
stop_loss = self.calculate_stop_loss(signal['signal'])
take_profit = self.calculate_take_profit(signal['signal'], stop_loss)
position_size = self.calculate_position_size(stop_loss)
# Execute trade through broker API (pseudo-code)
trade_success = await self.send_to_broker(
symbol=self.symbol,
action=signal['signal'],
size=position_size,
stop_loss=stop_loss,
take_profit=take_profit
)
if trade_success:
self.last_signal = signal['signal']
await self.send_notification(
action=signal['signal'],
price=self.current_price,
stop_loss=stop_loss,
take_profit=take_profit,
confidence=signal['confidence'],
reason=signal['reason']
)
def calculate_stop_loss(self, signal_type):
"""Calculate stop loss based on ATR"""
if signal_type == 'BUY':
return self.current_price - (self.ohlc_data['atr'] * 1.5)
elif signal_type == 'SELL':
return self.current_price + (self.ohlc_data['atr'] * 1.5)
return None
def calculate_take_profit(self, signal_type, stop_loss):
"""Calculate take profit based on risk-reward ratio"""
if signal_type == 'BUY':
return self.current_price + abs(self.current_price - stop_loss) * self.take_profit_ratio
elif signal_type == 'SELL':
return self.current_price - abs(stop_loss - self.current_price) * self.take_profit_ratio
return None
def calculate_position_size(self, stop_loss):
"""Calculate position size based on account balance and risk"""
risk_amount = self.account_balance * self.risk_per_trade
risk_per_unit = abs(self.current_price - stop_loss)
if risk_per_unit == 0:
return 0
# For XAU/USD, 1 lot = 100 oz, price per pip is $0.10 for mini lots
position_size = (risk_amount / risk_per_unit) / 100
return round(position_size, 2) # Round to 2 decimal places
async def send_to_broker(self, **trade_params):
"""Placeholder for broker API integration"""
print(f"\nπ Would execute trade with params:")
for k, v in trade_params.items():
print(f"{k}: {v}")
# In production, implement actual broker API calls here
# Example for MT5:
# mt5.initialize()
# request = {
# "action": mt5.TRADE_ACTION_DEAL,
# "symbol": trade_params['symbol'],
# "volume": trade_params['size'],
# "type": mt5.ORDER_TYPE_BUY if trade_params['action'] == 'BUY' else mt5.ORDER_TYPE_SELL,
# "price": trade_params['price'],
# "sl": trade_params['stop_loss'],
# "tp": trade_params['take_profit'],
# "deviation": 10,
# "magic": 123456,
# "comment": "Golden Maverick Trade",
# "type_time": mt5.ORDER_TIME_GTC,
# "type_filling": mt5.ORDER_FILLING_IOC,
# }
# result = mt5.order_send(request)
# Simulate success for demo
return True
async def send_notification(self, **kwargs):
"""Send trade notification via Telegram or other channels"""
message = (
f"π’ New Trade Alert π’\n\n"
f"Symbol: {self.symbol}\n"
f"Action: {kwargs['action']}\n"
f"Price: {kwargs['price']:.2f}\n"
f"Stop Loss: {kwargs['stop_loss']:.2f}\n"
f"Take Profit: {kwargs['take_profit']:.2f}\n"
f"Confidence: {kwargs['confidence']*100:.1f}%\n"
f"Reason: {kwargs['reason']}\n\n"
f"Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
print(f"\nπ© Notification:\n{message}")
# Actual Telegram implementation would look like:
# if os.getenv('TELEGRAM_BOT_TOKEN'):
# bot = telegram.Bot(token=os.getenv('TELEGRAM_BOT_TOKEN'))
# await bot.send_message(
# chat_id=os.getenv('TELEGRAM_CHAT_ID'),
# text=message
# )
async def main():
bot = GoldenMaverick()
print("π₯ Golden Maverick AI Gold Trading Bot Activated π₯")
print(f"Tracking: {bot.symbol} | Timeframe: {bot.timeframe}")
await bot.fetch_market_data()
if __name__ == "__main__":
asyncio.run(main())
</html> |