golden-maverick-ai-gold-trading-bot / golden_maverick_bot.py
4Rlyd's picture
You are an expert AI trading system developer specializing in forex automation.
96adaeb verified
python
#!/usr/bin/env python3
import os
import time
import json
import asyncio
import numpy as np
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
from tradingview_ta import TA_Handler, Interval
from ta.trend import MACD, EMAIndicator
from ta.momentum import RSIIndicator
from ta.volatility import BollingerBands
from ta.volatility import AverageTrueRange
from sklearn.preprocessing import MinMaxScaler
from tensorflow.keras.models import load_model
# Load environment variables
load_dotenv()
class GoldenMaverick:
"""
AI-powered Gold (XAU/USD) Trading Bot with automated technical analysis and trade execution
"""
def __init__(self):
self.symbol = "XAUUSD"
self.exchange = "OANDA"
self.timeframe = Interval.INTERVAL_5_MINUTES
self.model_path = "models/gold_predictor.h5"
self.risk_per_trade = 0.02 # 2% risk per trade
self.take_profit_ratio = 2.0 # 1:2 risk-reward
self.trailing_stop_enabled = True
self.trailing_stop_distance = 0.0020 # 20 pips for XAU/USD
self.last_signal = None
self.account_balance = 10000 # Default, should be fetched from broker
self.load_ai_model()
def load_ai_model(self):
"""Load pre-trained AI model for market prediction"""
try:
self.model = load_model(self.model_path)
print("AI Model loaded successfully")
except Exception as e:
print(f"Error loading AI model: {e}")
self.model = None
async def fetch_market_data(self):
"""Fetch real-time market data from TradingView"""
while True:
try:
handler = TA_Handler(
symbol=self.symbol,
exchange=self.exchange,
screener="forex",
interval=self.timeframe,
timeout=10
)
analysis = handler.get_analysis()
self.current_price = analysis.indicators['close']
self.ohlc_data = {
'open': analysis.indicators['open'],
'high': analysis.indicators['high'],
'low': analysis.indicators['low'],
'close': self.current_price,
'volume': analysis.indicators['volume']
}
print(f"\n[{datetime.now()}] XAU/USD Price: {self.current_price:.2f}")
await self.analyze_market()
await asyncio.sleep(30) # Update every 30 seconds
except Exception as e:
print(f"Error fetching data: {e}")
await asyncio.sleep(60)
async def analyze_market(self):
"""Perform comprehensive technical analysis"""
# Load data into DataFrame
df = pd.DataFrame([self.ohlc_data])
# Calculate indicators
df = self.calculate_technical_indicators(df)
# AI-based prediction
ai_signal = await self.generate_ai_signal(df)
# Traditional TA signals
ta_signals = self.generate_ta_signals(df)
# Combine signals
final_signal = self.combine_signals(ai_signal, ta_signals)
# Execute trading logic
if final_signal['signal'] != 'WAIT':
await self.execute_trade(final_signal)
def calculate_technical_indicators(self, df):
"""Calculate all technical indicators"""
# Moving Averages
df['ema_20'] = EMAIndicator(df['close'], window=20).ema_indicator()
df['ema_50'] = EMAIndicator(df['close'], window=50).ema_indicator()
df['ema_200'] = EMAIndicator(df['close'], window=200).ema_indicator()
# Momentum Indicators
df['rsi'] = RSIIndicator(df['close'], window=14).rsi()
macd = MACD(df['close'], window_slow=26, window_fast=12, window_sign=9)
df['macd'] = macd.macd()
df['macd_signal'] = macd.macd_signal()
df['macd_diff'] = macd.macd_diff()
# Volatility Indicators
bb = BollingerBands(df['close'], window=20, window_dev=2)
df['bb_upper'] = bb.bollinger_hband()
df['bb_middle'] = bb.bollinger_mavg()
df['bb_lower'] = bb.bollinger_lband()
df['atr'] = AverageTrueRange(
high=df['high'],
low=df['low'],
close=df['close'],
window=14
).average_true_range()
return df
async def generate_ai_signal(self, df):
"""Generate signal using AI model"""
if not self.model:
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'AI Model not available'}
try:
# Prepare data for AI model
features = df[['close', 'ema_20', 'ema_50', 'rsi', 'macd', 'atr']].values
scaler = MinMaxScaler()
features_scaled = scaler.fit_transform(features)
features_scaled = np.reshape(features_scaled, (1, features_scaled.shape[0], features_scaled.shape[1]))
# Make prediction
prediction = self.model.predict(features_scaled)
confidence = np.max(prediction)
signal = np.argmax(prediction)
return {
'signal': 'BUY' if signal == 0 else 'SELL' if signal == 1 else 'WAIT',
'confidence': float(confidence),
'reason': 'AI Market Prediction'
}
except Exception as e:
print(f"AI Prediction Error: {e}")
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'Prediction Error'}
def generate_ta_signals(self, df):
"""Generate signals based on traditional technical analysis"""
signals = []
confidence = 0
reasons = []
# EMA Crossover Strategy
if df['ema_20'].iloc[-1] > df['ema_50'].iloc[-1] and df['ema_50'].iloc[-1] > df['ema_200'].iloc[-1]:
signals.append('BUY')
confidence += 0.3
reasons.append("Golden Cross (EMA 20 > 50 > 200)")
elif df['ema_20'].iloc[-1] < df['ema_50'].iloc[-1] and df['ema_50'].iloc[-1] < df['ema_200'].iloc[-1]:
signals.append('SELL')
confidence += 0.3
reasons.append("Death Cross (EMA 20 < 50 < 200)")
# RSI Analysis
if df['rsi'].iloc[-1] < 30:
signals.append('BUY')
confidence += 0.2
reasons.append("Oversold (RSI < 30)")
elif df['rsi'].iloc[-1] > 70:
signals.append('SELL')
confidence += 0.2
reasons.append("Overbought (RSI > 70)")
# MACD Analysis
if df['macd'].iloc[-1] > df['macd_signal'].iloc[-1] and df['macd'].iloc[-2] <= df['macd_signal'].iloc[-2]:
signals.append('BUY')
confidence += 0.2
reasons.append("MACD Bullish Crossover")
elif df['macd'].iloc[-1] < df['macd_signal'].iloc[-1] and df['macd'].iloc[-2] >= df['macd_signal'].iloc[-2]:
signals.append('SELL')
confidence += 0.2
reasons.append("MACD Bearish Crossover")
# Bollinger Bands Analysis
if df['close'].iloc[-1] < df['bb_lower'].iloc[-1]:
signals.append('BUY')
confidence += 0.1
reasons.append("Price at Lower Bollinger Band")
elif df['close'].iloc[-1] > df['bb_upper'].iloc[-1]:
signals.append('SELL')
confidence += 0.1
reasons.append("Price at Upper Bollinger Band")
# Determine final signal
if not signals:
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'No strong signals detected'}
# Count votes and determine primary signal
buy_count = signals.count('BUY')
sell_count = signals.count('SELL')
final_signal = 'BUY' if buy_count > sell_count else 'SELL' if sell_count > buy_count else 'WAIT'
return {
'signal': final_signal,
'confidence': min(confidence, 0.9), # Cap at 90% for TA alone
'reason': " | ".join(reasons)
}
def combine_signals(self, ai_signal, ta_signal):
"""Combine AI and traditional TA signals with weighted confidence"""
if ai_signal['signal'] == 'WAIT' and ta_signal['signal'] == 'WAIT':
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'No consensus'}
# Weighted combination (60% AI, 40% TA)
ai_weight = 0.6
ta_weight = 0.4
if ai_signal['signal'] == ta_signal['signal']:
combined_confidence = (ai_signal['confidence'] * ai_weight +
ta_signal['confidence'] * ta_weight)
return {
'signal': ai_signal['signal'],
'confidence': combined_confidence,
'reason': f"AI+TA Consensus: {ai_signal['reason']} & {ta_signal['reason']}"
}
else:
# When signals conflict, prefer AI with higher confidence
if ai_signal['confidence'] >= 0.7:
return ai_signal
elif ta_signal['confidence'] >= 0.7:
return ta_signal
else:
return {'signal': 'WAIT', 'confidence': 0, 'reason': 'Conflicting signals'}
async def execute_trade(self, signal):
"""Execute trade based on generated signal"""
# Check if this is a new signal
if self.last_signal == signal['signal']:
print(f"Maintaining existing {signal['signal']} position")
return
print(f"\nπŸš€ Executing {signal['signal']} Signal πŸš€")
print(f"Confidence: {signal['confidence']*100:.1f}%")
print(f"Reason: {signal['reason']}")
print(f"Current Price: {self.current_price:.2f}")
# Calculate position size and risk parameters
stop_loss = self.calculate_stop_loss(signal['signal'])
take_profit = self.calculate_take_profit(signal['signal'], stop_loss)
position_size = self.calculate_position_size(stop_loss)
# Execute trade through broker API (pseudo-code)
trade_success = await self.send_to_broker(
symbol=self.symbol,
action=signal['signal'],
size=position_size,
stop_loss=stop_loss,
take_profit=take_profit
)
if trade_success:
self.last_signal = signal['signal']
await self.send_notification(
action=signal['signal'],
price=self.current_price,
stop_loss=stop_loss,
take_profit=take_profit,
confidence=signal['confidence'],
reason=signal['reason']
)
def calculate_stop_loss(self, signal_type):
"""Calculate stop loss based on ATR"""
if signal_type == 'BUY':
return self.current_price - (self.ohlc_data['atr'] * 1.5)
elif signal_type == 'SELL':
return self.current_price + (self.ohlc_data['atr'] * 1.5)
return None
def calculate_take_profit(self, signal_type, stop_loss):
"""Calculate take profit based on risk-reward ratio"""
if signal_type == 'BUY':
return self.current_price + abs(self.current_price - stop_loss) * self.take_profit_ratio
elif signal_type == 'SELL':
return self.current_price - abs(stop_loss - self.current_price) * self.take_profit_ratio
return None
def calculate_position_size(self, stop_loss):
"""Calculate position size based on account balance and risk"""
risk_amount = self.account_balance * self.risk_per_trade
risk_per_unit = abs(self.current_price - stop_loss)
if risk_per_unit == 0:
return 0
# For XAU/USD, 1 lot = 100 oz, price per pip is $0.10 for mini lots
position_size = (risk_amount / risk_per_unit) / 100
return round(position_size, 2) # Round to 2 decimal places
async def send_to_broker(self, **trade_params):
"""Placeholder for broker API integration"""
print(f"\nπŸ“Š Would execute trade with params:")
for k, v in trade_params.items():
print(f"{k}: {v}")
# In production, implement actual broker API calls here
# Example for MT5:
# mt5.initialize()
# request = {
# "action": mt5.TRADE_ACTION_DEAL,
# "symbol": trade_params['symbol'],
# "volume": trade_params['size'],
# "type": mt5.ORDER_TYPE_BUY if trade_params['action'] == 'BUY' else mt5.ORDER_TYPE_SELL,
# "price": trade_params['price'],
# "sl": trade_params['stop_loss'],
# "tp": trade_params['take_profit'],
# "deviation": 10,
# "magic": 123456,
# "comment": "Golden Maverick Trade",
# "type_time": mt5.ORDER_TIME_GTC,
# "type_filling": mt5.ORDER_FILLING_IOC,
# }
# result = mt5.order_send(request)
# Simulate success for demo
return True
async def send_notification(self, **kwargs):
"""Send trade notification via Telegram or other channels"""
message = (
f"🟒 New Trade Alert 🟒\n\n"
f"Symbol: {self.symbol}\n"
f"Action: {kwargs['action']}\n"
f"Price: {kwargs['price']:.2f}\n"
f"Stop Loss: {kwargs['stop_loss']:.2f}\n"
f"Take Profit: {kwargs['take_profit']:.2f}\n"
f"Confidence: {kwargs['confidence']*100:.1f}%\n"
f"Reason: {kwargs['reason']}\n\n"
f"Time: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}"
)
print(f"\nπŸ“© Notification:\n{message}")
# Actual Telegram implementation would look like:
# if os.getenv('TELEGRAM_BOT_TOKEN'):
# bot = telegram.Bot(token=os.getenv('TELEGRAM_BOT_TOKEN'))
# await bot.send_message(
# chat_id=os.getenv('TELEGRAM_CHAT_ID'),
# text=message
# )
async def main():
bot = GoldenMaverick()
print("πŸ”₯ Golden Maverick AI Gold Trading Bot Activated πŸ”₯")
print(f"Tracking: {bot.symbol} | Timeframe: {bot.timeframe}")
await bot.fetch_market_data()
if __name__ == "__main__":
asyncio.run(main())
</html>