Spaces:
Sleeping
Sleeping
File size: 1,351 Bytes
f5edfa8 51f7bca f5edfa8 51f7bca 703a1e6 51f7bca 703a1e6 51f7bca 703a1e6 51f7bca 703a1e6 51f7bca 703a1e6 51f7bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
return tokenizer, model
tokenizer, model = load_model()
st.title("Multi-Agent Dialogue Simulator")
user_input = st.text_input("Enter a scenario or question:")
if st.button("Generate Collaboration"):
# Create a custom prompt with two roles
prompt = f"""
The following is a conversation between two agents:
Agent A: A Lean Six Sigma process re-engineer.
Agent B: An AI/data scientist.
They discuss how to solve the user's challenge:
User scenario: {user_input}
Agent A: Let's break down the problem step by step.
Agent B:
"""
# Generate the conversation
inputs = tokenizer.encode(prompt, return_tensors="pt")
outputs = model.generate(
inputs,
max_length=300,
min_length=50,
temperature=0.7,
do_sample=True,
top_p=0.9,
repetition_penalty=1.2
)
raw_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Post-process to split or isolate Agent B's portion
# (For simplicity, we'll just display raw_text)
st.markdown("**Conversation**:")
st.write(raw_text)
|