Spaces:
Sleeping
Sleeping
Addressed NameError.
Browse files
app.py
CHANGED
@@ -1,23 +1,54 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
@st.cache_resource
|
5 |
def load_agentA():
|
6 |
-
|
7 |
tokenizerA = AutoTokenizer.from_pretrained("distilgpt2")
|
8 |
modelA = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
9 |
return tokenizerA, modelA
|
10 |
|
11 |
@st.cache_resource
|
12 |
def load_agentB():
|
13 |
-
|
14 |
tokenizerB = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
15 |
modelB = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
16 |
return tokenizerB, modelB
|
17 |
|
|
|
18 |
tokenizerA, modelA = load_agentA()
|
19 |
tokenizerB, modelB = load_agentB()
|
20 |
|
|
|
21 |
st.title("True Multi-Agent Conversation")
|
22 |
|
23 |
# We store the conversation as a list of (speaker, text).
|
@@ -27,12 +58,11 @@ if "conversation" not in st.session_state:
|
|
27 |
user_input = st.text_input("Enter a question or scenario:")
|
28 |
|
29 |
if st.button("Start/Continue Conversation"):
|
30 |
-
# 1)
|
31 |
if len(st.session_state.conversation) == 0:
|
32 |
st.session_state.conversation.append(("User", user_input))
|
33 |
else:
|
34 |
-
# If conversation is ongoing,
|
35 |
-
# or ignore if you want to keep the user out after the initial scenario.
|
36 |
st.session_state.conversation.append(("User", user_input))
|
37 |
|
38 |
# --- AGENT A Step ---
|
@@ -55,39 +85,4 @@ if st.button("Start/Continue Conversation"):
|
|
55 |
|
56 |
# Display the entire conversation so far
|
57 |
for speaker, text in st.session_state.conversation:
|
58 |
-
st.markdown(f"**{speaker}:** {text}")
|
59 |
-
|
60 |
-
|
61 |
-
def generate_response(agent_name, model, tokenizer, conversation):
|
62 |
-
"""
|
63 |
-
Takes the entire conversation as context, plus the agent name,
|
64 |
-
and runs a single inference call for that agent.
|
65 |
-
"""
|
66 |
-
# 1) Build a textual prompt from conversation
|
67 |
-
# e.g. A simple approach: just concatenate everything
|
68 |
-
# focusing on the last few messages to avoid token limit issues
|
69 |
-
prompt_text = build_prompt(conversation, agent_name)
|
70 |
-
|
71 |
-
inputs = tokenizer.encode(prompt_text, return_tensors="pt")
|
72 |
-
outputs = model.generate(
|
73 |
-
inputs,
|
74 |
-
max_length=200,
|
75 |
-
temperature=0.7,
|
76 |
-
do_sample=True,
|
77 |
-
top_p=0.9
|
78 |
-
)
|
79 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
80 |
-
|
81 |
-
|
82 |
-
def build_prompt(conversation, agent_name):
|
83 |
-
"""
|
84 |
-
Construct a single prompt that includes the entire conversation so far,
|
85 |
-
labeling each line with speaker, and ends with the new agent's label.
|
86 |
-
"""
|
87 |
-
text_blocks = []
|
88 |
-
for speaker, text in conversation:
|
89 |
-
text_blocks.append(f"{speaker}: {text}")
|
90 |
-
|
91 |
-
# Now add the new agent's label at the end, so the model continues from there
|
92 |
-
text_blocks.append(f"{agent_name}:")
|
93 |
-
return "\n".join(text_blocks)
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
def build_prompt(conversation, agent_name):
|
5 |
+
"""
|
6 |
+
Construct a single prompt that includes the entire conversation so far,
|
7 |
+
labeling each line with speaker, and ends with the new agent's label.
|
8 |
+
"""
|
9 |
+
text_blocks = []
|
10 |
+
for speaker, text in conversation:
|
11 |
+
text_blocks.append(f"{speaker}: {text}")
|
12 |
+
|
13 |
+
# Now add the new agent's label at the end, so the model continues from there
|
14 |
+
text_blocks.append(f"{agent_name}:")
|
15 |
+
return "\n".join(text_blocks)
|
16 |
+
|
17 |
+
def generate_response(agent_name, model, tokenizer, conversation):
|
18 |
+
"""
|
19 |
+
Takes the entire conversation as context, plus the agent name,
|
20 |
+
and runs a single inference call for that agent.
|
21 |
+
"""
|
22 |
+
prompt_text = build_prompt(conversation, agent_name)
|
23 |
+
inputs = tokenizer.encode(prompt_text, return_tensors="pt")
|
24 |
+
outputs = model.generate(
|
25 |
+
inputs,
|
26 |
+
max_length=200,
|
27 |
+
temperature=0.7,
|
28 |
+
do_sample=True,
|
29 |
+
top_p=0.9
|
30 |
+
)
|
31 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
32 |
+
|
33 |
@st.cache_resource
|
34 |
def load_agentA():
|
35 |
+
"""Loads the DistilGPT2 model/tokenizer for Agent A."""
|
36 |
tokenizerA = AutoTokenizer.from_pretrained("distilgpt2")
|
37 |
modelA = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
38 |
return tokenizerA, modelA
|
39 |
|
40 |
@st.cache_resource
|
41 |
def load_agentB():
|
42 |
+
"""Loads the GPT-Neo-125M model/tokenizer for Agent B."""
|
43 |
tokenizerB = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
|
44 |
modelB = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
|
45 |
return tokenizerB, modelB
|
46 |
|
47 |
+
# Load agents
|
48 |
tokenizerA, modelA = load_agentA()
|
49 |
tokenizerB, modelB = load_agentB()
|
50 |
|
51 |
+
# Streamlit app starts here
|
52 |
st.title("True Multi-Agent Conversation")
|
53 |
|
54 |
# We store the conversation as a list of (speaker, text).
|
|
|
58 |
user_input = st.text_input("Enter a question or scenario:")
|
59 |
|
60 |
if st.button("Start/Continue Conversation"):
|
61 |
+
# 1) If this is the first message, add the user input
|
62 |
if len(st.session_state.conversation) == 0:
|
63 |
st.session_state.conversation.append(("User", user_input))
|
64 |
else:
|
65 |
+
# If conversation is ongoing, append user’s new input
|
|
|
66 |
st.session_state.conversation.append(("User", user_input))
|
67 |
|
68 |
# --- AGENT A Step ---
|
|
|
85 |
|
86 |
# Display the entire conversation so far
|
87 |
for speaker, text in st.session_state.conversation:
|
88 |
+
st.markdown(f"**{speaker}:** {text}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|