Spaces:
Sleeping
Sleeping
Enhance XAI transparency and user experience: Added real-time conversation display during model interactions, limited model exchanges to 3 rounds, improved response quality and clarity, and refined summary generation. Integrated spinner feedback for better UI responsiveness.
Browse files
app.py
CHANGED
@@ -38,21 +38,21 @@ def generate_engineer_response(user_text, tokenizer, model):
|
|
38 |
"""
|
39 |
prompt = f"""
|
40 |
User text: {user_text}
|
41 |
-
Provide a technical approach or solution.
|
42 |
"""
|
43 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
44 |
outputs = model.generate(
|
45 |
inputs["input_ids"],
|
46 |
attention_mask=inputs["attention_mask"],
|
47 |
-
max_new_tokens=
|
48 |
temperature=0.7,
|
49 |
do_sample=True,
|
50 |
-
top_p=0.
|
51 |
-
repetition_penalty=1.
|
52 |
no_repeat_ngram_size=2,
|
53 |
pad_token_id=tokenizer.pad_token_id
|
54 |
)
|
55 |
-
explanation = f"
|
56 |
return tokenizer.decode(outputs[0], skip_special_tokens=True), explanation
|
57 |
|
58 |
def generate_analyst_response(user_text, engineer_output, tokenizer, model):
|
@@ -62,31 +62,31 @@ def generate_analyst_response(user_text, engineer_output, tokenizer, model):
|
|
62 |
prompt = f"""
|
63 |
Engineer provided the following: {engineer_output}
|
64 |
|
65 |
-
|
66 |
"""
|
67 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
68 |
outputs = model.generate(
|
69 |
inputs["input_ids"],
|
70 |
attention_mask=inputs["attention_mask"],
|
71 |
-
max_new_tokens=
|
72 |
temperature=0.7,
|
73 |
do_sample=True,
|
74 |
-
top_p=0.
|
75 |
-
repetition_penalty=1.
|
76 |
no_repeat_ngram_size=2,
|
77 |
pad_token_id=tokenizer.pad_token_id
|
78 |
)
|
79 |
-
explanation = f"
|
80 |
return tokenizer.decode(outputs[0], skip_special_tokens=True), explanation
|
81 |
|
82 |
def summarize_conversation(conversation):
|
83 |
"""
|
84 |
Summarize the entire conversation to produce a comprehensive plan.
|
85 |
"""
|
86 |
-
summary = "
|
87 |
for speaker, text in conversation:
|
88 |
if speaker != "User":
|
89 |
-
summary += f"- {speaker}
|
90 |
return summary
|
91 |
|
92 |
##############################################################################
|
@@ -109,48 +109,23 @@ if st.button("Start/Continue Conversation"):
|
|
109 |
st.session_state.conversation.append(("User", user_text))
|
110 |
|
111 |
# Engineer generates a response
|
112 |
-
|
113 |
-
user_text=user_text,
|
114 |
-
tokenizer=tokenizerE,
|
115 |
-
model=modelE
|
116 |
-
)
|
117 |
-
st.session_state.conversation.append(("Engineer", engineer_resp))
|
118 |
-
st.session_state.conversation.append(("Engineer Explanation", engineer_explanation))
|
119 |
-
|
120 |
-
# Display Engineer response immediately
|
121 |
-
st.markdown(f"**Engineer:** {engineer_resp}")
|
122 |
-
st.markdown(f"<i>{engineer_explanation}</i>", unsafe_allow_html=True)
|
123 |
-
|
124 |
-
# Analyst generates a response based on engineer's output
|
125 |
-
analyst_resp, analyst_explanation = generate_analyst_response(
|
126 |
-
user_text=user_text,
|
127 |
-
engineer_output=engineer_resp,
|
128 |
-
tokenizer=tokenizerA,
|
129 |
-
model=modelA
|
130 |
-
)
|
131 |
-
st.session_state.conversation.append(("Analyst", analyst_resp))
|
132 |
-
st.session_state.conversation.append(("Analyst Explanation", analyst_explanation))
|
133 |
-
|
134 |
-
# Display Analyst response immediately
|
135 |
-
st.markdown(f"**Analyst:** {analyst_resp}")
|
136 |
-
st.markdown(f"<i>{analyst_explanation}</i>", unsafe_allow_html=True)
|
137 |
-
|
138 |
-
# Limit the conversation to 3 exchanges between Engineer and Analyst
|
139 |
-
for _ in range(2):
|
140 |
engineer_resp, engineer_explanation = generate_engineer_response(
|
141 |
-
user_text=
|
142 |
tokenizer=tokenizerE,
|
143 |
model=modelE
|
144 |
)
|
145 |
st.session_state.conversation.append(("Engineer", engineer_resp))
|
146 |
st.session_state.conversation.append(("Engineer Explanation", engineer_explanation))
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
|
|
|
|
152 |
analyst_resp, analyst_explanation = generate_analyst_response(
|
153 |
-
user_text=
|
154 |
engineer_output=engineer_resp,
|
155 |
tokenizer=tokenizerA,
|
156 |
model=modelA
|
@@ -158,14 +133,43 @@ if st.button("Start/Continue Conversation"):
|
|
158 |
st.session_state.conversation.append(("Analyst", analyst_resp))
|
159 |
st.session_state.conversation.append(("Analyst Explanation", analyst_explanation))
|
160 |
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
# Generate the summary after the conversation
|
166 |
final_plan = summarize_conversation(st.session_state.conversation)
|
167 |
st.session_state.conversation.append(("Summary", final_plan))
|
168 |
-
st.markdown(
|
169 |
|
170 |
for speaker, text in st.session_state.conversation:
|
171 |
if speaker == "User":
|
@@ -174,3 +178,5 @@ for speaker, text in st.session_state.conversation:
|
|
174 |
st.markdown(f"**{speaker}:** {text}")
|
175 |
elif "Explanation" in speaker:
|
176 |
st.markdown(f"<i>{speaker}: {text}</i>", unsafe_allow_html=True)
|
|
|
|
|
|
38 |
"""
|
39 |
prompt = f"""
|
40 |
User text: {user_text}
|
41 |
+
Provide a technical approach or solution that directly addresses the problem. Ensure your response is actionable and concise.
|
42 |
"""
|
43 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
44 |
outputs = model.generate(
|
45 |
inputs["input_ids"],
|
46 |
attention_mask=inputs["attention_mask"],
|
47 |
+
max_new_tokens=80, # Generate up to 80 new tokens
|
48 |
temperature=0.7,
|
49 |
do_sample=True,
|
50 |
+
top_p=0.85,
|
51 |
+
repetition_penalty=1.2,
|
52 |
no_repeat_ngram_size=2,
|
53 |
pad_token_id=tokenizer.pad_token_id
|
54 |
)
|
55 |
+
explanation = f"Engineer response based on user input: '{user_text}'"
|
56 |
return tokenizer.decode(outputs[0], skip_special_tokens=True), explanation
|
57 |
|
58 |
def generate_analyst_response(user_text, engineer_output, tokenizer, model):
|
|
|
62 |
prompt = f"""
|
63 |
Engineer provided the following: {engineer_output}
|
64 |
|
65 |
+
Based on this, provide an actionable data-driven approach or solution to complement the engineer's perspective.
|
66 |
"""
|
67 |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
68 |
outputs = model.generate(
|
69 |
inputs["input_ids"],
|
70 |
attention_mask=inputs["attention_mask"],
|
71 |
+
max_new_tokens=80, # Generate up to 80 new tokens
|
72 |
temperature=0.7,
|
73 |
do_sample=True,
|
74 |
+
top_p=0.85,
|
75 |
+
repetition_penalty=1.2,
|
76 |
no_repeat_ngram_size=2,
|
77 |
pad_token_id=tokenizer.pad_token_id
|
78 |
)
|
79 |
+
explanation = f"Analyst response based on Engineer's output: '{engineer_output}'"
|
80 |
return tokenizer.decode(outputs[0], skip_special_tokens=True), explanation
|
81 |
|
82 |
def summarize_conversation(conversation):
|
83 |
"""
|
84 |
Summarize the entire conversation to produce a comprehensive plan.
|
85 |
"""
|
86 |
+
summary = "**Final Plan:**\n"
|
87 |
for speaker, text in conversation:
|
88 |
if speaker != "User":
|
89 |
+
summary += f"- **{speaker}:** {text}\n"
|
90 |
return summary
|
91 |
|
92 |
##############################################################################
|
|
|
109 |
st.session_state.conversation.append(("User", user_text))
|
110 |
|
111 |
# Engineer generates a response
|
112 |
+
with st.spinner("Engineer is formulating a solution..."):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
engineer_resp, engineer_explanation = generate_engineer_response(
|
114 |
+
user_text=user_text,
|
115 |
tokenizer=tokenizerE,
|
116 |
model=modelE
|
117 |
)
|
118 |
st.session_state.conversation.append(("Engineer", engineer_resp))
|
119 |
st.session_state.conversation.append(("Engineer Explanation", engineer_explanation))
|
120 |
|
121 |
+
# Display Engineer response immediately
|
122 |
+
st.markdown(f"**Engineer:** {engineer_resp}")
|
123 |
+
st.markdown(f"<i>{engineer_explanation}</i>", unsafe_allow_html=True)
|
124 |
|
125 |
+
# Analyst generates a response based on engineer's output
|
126 |
+
with st.spinner("Analyst is analyzing data and providing insights..."):
|
127 |
analyst_resp, analyst_explanation = generate_analyst_response(
|
128 |
+
user_text=user_text,
|
129 |
engineer_output=engineer_resp,
|
130 |
tokenizer=tokenizerA,
|
131 |
model=modelA
|
|
|
133 |
st.session_state.conversation.append(("Analyst", analyst_resp))
|
134 |
st.session_state.conversation.append(("Analyst Explanation", analyst_explanation))
|
135 |
|
136 |
+
# Display Analyst response immediately
|
137 |
+
st.markdown(f"**Analyst:** {analyst_resp}")
|
138 |
+
st.markdown(f"<i>{analyst_explanation}</i>", unsafe_allow_html=True)
|
139 |
+
|
140 |
+
# Limit the conversation to 3 exchanges between Engineer and Analyst
|
141 |
+
for _ in range(2):
|
142 |
+
with st.spinner("Engineer is formulating a solution..."):
|
143 |
+
engineer_resp, engineer_explanation = generate_engineer_response(
|
144 |
+
user_text=analyst_resp,
|
145 |
+
tokenizer=tokenizerE,
|
146 |
+
model=modelE
|
147 |
+
)
|
148 |
+
st.session_state.conversation.append(("Engineer", engineer_resp))
|
149 |
+
st.session_state.conversation.append(("Engineer Explanation", engineer_explanation))
|
150 |
+
|
151 |
+
# Display Engineer response immediately
|
152 |
+
st.markdown(f"**Engineer:** {engineer_resp}")
|
153 |
+
st.markdown(f"<i>{engineer_explanation}</i>", unsafe_allow_html=True)
|
154 |
+
|
155 |
+
with st.spinner("Analyst is analyzing data and providing insights..."):
|
156 |
+
analyst_resp, analyst_explanation = generate_analyst_response(
|
157 |
+
user_text=engineer_resp,
|
158 |
+
engineer_output=engineer_resp,
|
159 |
+
tokenizer=tokenizerA,
|
160 |
+
model=modelA
|
161 |
+
)
|
162 |
+
st.session_state.conversation.append(("Analyst", analyst_resp))
|
163 |
+
st.session_state.conversation.append(("Analyst Explanation", analyst_explanation))
|
164 |
+
|
165 |
+
# Display Analyst response immediately
|
166 |
+
st.markdown(f"**Analyst:** {analyst_resp}")
|
167 |
+
st.markdown(f"<i>{analyst_explanation}</i>", unsafe_allow_html=True)
|
168 |
|
169 |
# Generate the summary after the conversation
|
170 |
final_plan = summarize_conversation(st.session_state.conversation)
|
171 |
st.session_state.conversation.append(("Summary", final_plan))
|
172 |
+
st.markdown(final_plan)
|
173 |
|
174 |
for speaker, text in st.session_state.conversation:
|
175 |
if speaker == "User":
|
|
|
178 |
st.markdown(f"**{speaker}:** {text}")
|
179 |
elif "Explanation" in speaker:
|
180 |
st.markdown(f"<i>{speaker}: {text}</i>", unsafe_allow_html=True)
|
181 |
+
else:
|
182 |
+
st.markdown(f"**{speaker}:** {text}")
|