Spaces:
Sleeping
Sleeping
Iterating to improve models' responses.
Browse files
app.py
CHANGED
@@ -30,13 +30,13 @@ tokenizerA, modelA = load_model_analyst()
|
|
30 |
|
31 |
def generate_engineer_response(user_text, tokenizer, model):
|
32 |
"""
|
33 |
-
Engineer
|
34 |
"""
|
35 |
prompt = f"""
|
36 |
-
User text: {user_text}
|
37 |
-
|
38 |
-
|
39 |
-
"""
|
40 |
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
41 |
outputs = model.generate(
|
42 |
inputs,
|
@@ -51,14 +51,13 @@ Provide a technical approach or solution.
|
|
51 |
|
52 |
def generate_analyst_response(user_text, engineer_output, tokenizer, model):
|
53 |
"""
|
54 |
-
Analyst
|
55 |
"""
|
56 |
prompt = f"""
|
57 |
-
User text: {user_text}
|
58 |
-
|
59 |
Engineer provided the following: {engineer_output}
|
60 |
|
61 |
Provide an approach or solution from a data-centric perspective.
|
|
|
62 |
"""
|
63 |
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
64 |
outputs = model.generate(
|
@@ -81,26 +80,52 @@ st.title("Multi-Agent System with XAI Demo")
|
|
81 |
if "conversation" not in st.session_state:
|
82 |
st.session_state.conversation = []
|
83 |
|
84 |
-
user_input
|
|
|
|
|
|
|
85 |
|
86 |
if st.button("Start/Continue Conversation"):
|
87 |
-
if user_input.strip():
|
88 |
-
|
|
|
|
|
|
|
89 |
engineer_resp = generate_engineer_response(
|
90 |
-
user_text=
|
91 |
tokenizer=tokenizerE,
|
92 |
model=modelE
|
93 |
)
|
94 |
st.session_state.conversation.append(("Engineer", engineer_resp))
|
95 |
|
96 |
-
#
|
97 |
analyst_resp = generate_analyst_response(
|
98 |
-
user_text=
|
99 |
engineer_output=engineer_resp,
|
100 |
tokenizer=tokenizerA,
|
101 |
model=modelA
|
102 |
)
|
103 |
st.session_state.conversation.append(("Analyst", analyst_resp))
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
for speaker, text in st.session_state.conversation:
|
106 |
-
|
|
|
|
|
|
|
|
30 |
|
31 |
def generate_engineer_response(user_text, tokenizer, model):
|
32 |
"""
|
33 |
+
As an Engineer, generate a concise approach or solution based on user input.
|
34 |
"""
|
35 |
prompt = f"""
|
36 |
+
User text: {user_text}
|
37 |
+
Provide a technical approach or solution.
|
38 |
+
|
39 |
+
"""
|
40 |
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
41 |
outputs = model.generate(
|
42 |
inputs,
|
|
|
51 |
|
52 |
def generate_analyst_response(user_text, engineer_output, tokenizer, model):
|
53 |
"""
|
54 |
+
As an Analyst, provide an approach or solution based on user input and engineer's output.
|
55 |
"""
|
56 |
prompt = f"""
|
|
|
|
|
57 |
Engineer provided the following: {engineer_output}
|
58 |
|
59 |
Provide an approach or solution from a data-centric perspective.
|
60 |
+
|
61 |
"""
|
62 |
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
63 |
outputs = model.generate(
|
|
|
80 |
if "conversation" not in st.session_state:
|
81 |
st.session_state.conversation = []
|
82 |
|
83 |
+
if "user_input" not in st.session_state:
|
84 |
+
st.session_state.user_input = ""
|
85 |
+
|
86 |
+
st.text_area("User Input:", value=st.session_state.user_input, height=100, max_chars=None, key="user_input")
|
87 |
|
88 |
if st.button("Start/Continue Conversation"):
|
89 |
+
if st.session_state.user_input.strip():
|
90 |
+
user_text = st.session_state.user_input
|
91 |
+
st.session_state.conversation.append(("User", user_text))
|
92 |
+
|
93 |
+
# Engineer generates a response
|
94 |
engineer_resp = generate_engineer_response(
|
95 |
+
user_text=user_text,
|
96 |
tokenizer=tokenizerE,
|
97 |
model=modelE
|
98 |
)
|
99 |
st.session_state.conversation.append(("Engineer", engineer_resp))
|
100 |
|
101 |
+
# Analyst generates a response based on engineer's output
|
102 |
analyst_resp = generate_analyst_response(
|
103 |
+
user_text=user_text,
|
104 |
engineer_output=engineer_resp,
|
105 |
tokenizer=tokenizerA,
|
106 |
model=modelA
|
107 |
)
|
108 |
st.session_state.conversation.append(("Analyst", analyst_resp))
|
109 |
|
110 |
+
# Limit the conversation to 3 exchanges between Engineer and Analyst
|
111 |
+
for _ in range(2):
|
112 |
+
engineer_resp = generate_engineer_response(
|
113 |
+
user_text=analyst_resp,
|
114 |
+
tokenizer=tokenizerE,
|
115 |
+
model=modelE
|
116 |
+
)
|
117 |
+
st.session_state.conversation.append(("Engineer", engineer_resp))
|
118 |
+
|
119 |
+
analyst_resp = generate_analyst_response(
|
120 |
+
user_text=engineer_resp,
|
121 |
+
engineer_output=engineer_resp,
|
122 |
+
tokenizer=tokenizerA,
|
123 |
+
model=modelA
|
124 |
+
)
|
125 |
+
st.session_state.conversation.append(("Analyst", analyst_resp))
|
126 |
+
|
127 |
for speaker, text in st.session_state.conversation:
|
128 |
+
if speaker == "User":
|
129 |
+
st.markdown(f"**{speaker}:** {text}")
|
130 |
+
else:
|
131 |
+
st.markdown(f"<div style='display:none'>{speaker}: {text}</div>", unsafe_allow_html=True)
|