Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| # https://zhuanlan.zhihu.com/p/112030273 | |
| def warp_optical_flow(batch_x, batch_flow): | |
| """ | |
| Modified from https://github.com/NVlabs/PWC-Net/blob/fc6ebf9a70a7387164df09a3a2070ba16f9c1ede/PyTorch/models/PWCNet.py # NOQA | |
| warp an im2 back to im1, according to the optical flow | |
| x: [B, L, C, H, W] (im2) | |
| flo: [B, L, 2, H, W] flow | |
| """ | |
| B, L, C, H, W = batch_x.shape | |
| B = B * L | |
| x = batch_x.contiguous().view(-1, C, H, W) | |
| flo = batch_flow.view(-1, 2, H, W) | |
| # mesh grid | |
| xx = torch.arange(0, W).view(1, -1).repeat(H, 1) | |
| yy = torch.arange(0, H).view(-1, 1).repeat(1, W) | |
| xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1) | |
| yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1) | |
| grid = torch.cat((xx, yy), 1).float() | |
| if x.is_cuda: | |
| grid = grid.cuda() | |
| vgrid = grid + flo | |
| # scale grid to [-1, 1] | |
| vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :] / max(W - 1, 1) - 1.0 | |
| vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :] / max(H - 1, 1) - 1.0 | |
| vgrid = vgrid.permute(0, 2, 3, 1) # B, H, W, 2(compatible with API) | |
| output = nn.functional.grid_sample(x, vgrid) # 按照vgrid将x warp到output张量上 | |
| mask = torch.autograd.Variable(torch.ones(x.size())).cuda() | |
| mask = nn.functional.grid_sample(mask, vgrid) # 这个我觉得没有太大意义,因为warp之后还是1(mask默认全是1) | |
| mask[mask < 0.9999] = 0 | |
| mask[mask > 0] = 1 # 仍然全是1 | |
| result = output * mask | |
| return result.view(-1, L, C, H, W) | |
| UNKNOWN_FLOW_THRESH = 1e7 | |
| def flow_to_image(flow): | |
| """ | |
| Convert flow into middlebury color code image | |
| :param flow: optical flow map | |
| :return: optical flow image in middlebury color | |
| """ | |
| u = flow[:, :, 0] | |
| v = flow[:, :, 1] | |
| maxu = -999. | |
| maxv = -999. | |
| minu = 999. | |
| minv = 999. | |
| idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) | |
| u[idxUnknow] = 0 | |
| v[idxUnknow] = 0 | |
| maxu = max(maxu, np.max(u)) | |
| minu = min(minu, np.min(u)) | |
| maxv = max(maxv, np.max(v)) | |
| minv = min(minv, np.min(v)) | |
| rad = np.sqrt(u ** 2 + v ** 2) | |
| maxrad = max(-1, np.max(rad)) | |
| u = u / (maxrad + np.finfo(float).eps) | |
| v = v / (maxrad + np.finfo(float).eps) | |
| img = compute_color(u, v) | |
| idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) | |
| img[idx] = 0 | |
| return np.uint8(img) | |
| def compute_color(u, v): | |
| """ | |
| compute optical flow color map | |
| :param u: optical flow horizontal map | |
| :param v: optical flow vertical map | |
| :return: optical flow in color code | |
| """ | |
| [h, w] = u.shape | |
| img = np.zeros([h, w, 3]) | |
| nanIdx = np.isnan(u) | np.isnan(v) | |
| u[nanIdx] = 0 | |
| v[nanIdx] = 0 | |
| colorwheel = make_color_wheel() | |
| ncols = np.size(colorwheel, 0) | |
| rad = np.sqrt(u ** 2 + v ** 2) | |
| a = np.arctan2(-v, -u) / np.pi | |
| fk = (a + 1) / 2 * (ncols - 1) + 1 | |
| k0 = np.floor(fk).astype(int) | |
| k1 = k0 + 1 | |
| k1[k1 == ncols + 1] = 1 | |
| f = fk - k0 | |
| for i in range(0, np.size(colorwheel, 1)): | |
| tmp = colorwheel[:, i] | |
| col0 = tmp[k0 - 1] / 255 | |
| col1 = tmp[k1 - 1] / 255 | |
| col = (1 - f) * col0 + f * col1 | |
| idx = rad <= 1 | |
| col[idx] = 1 - rad[idx] * (1 - col[idx]) | |
| notidx = np.logical_not(idx) | |
| col[notidx] *= 0.75 | |
| img[:, :, i] = np.uint8(np.floor(255 * col * (1 - nanIdx))) | |
| return img | |
| def make_color_wheel(): | |
| """ | |
| Generate color wheel according Middlebury color code | |
| :return: Color wheel | |
| """ | |
| RY = 15 | |
| YG = 6 | |
| GC = 4 | |
| CB = 11 | |
| BM = 13 | |
| MR = 6 | |
| ncols = RY + YG + GC + CB + BM + MR | |
| colorwheel = np.zeros([ncols, 3]) | |
| col = 0 | |
| # RY | |
| colorwheel[0:RY, 0] = 255 | |
| colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) | |
| col += RY | |
| # YG | |
| colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) | |
| colorwheel[col:col + YG, 1] = 255 | |
| col += YG | |
| # GC | |
| colorwheel[col:col + GC, 1] = 255 | |
| colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) | |
| col += GC | |
| # CB | |
| colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) | |
| colorwheel[col:col + CB, 2] = 255 | |
| col += CB | |
| # BM | |
| colorwheel[col:col + BM, 2] = 255 | |
| colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) | |
| col += + BM | |
| # MR | |
| colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) | |
| colorwheel[col:col + MR, 0] = 255 | |
| return colorwheel | |