Spaces:
Sleeping
Sleeping
Commit
·
ca6b6f7
1
Parent(s):
79a7f1b
Remove previous DPTNet/DCUNet implementations
Browse files- cfg/model/dptnet.yaml +5 -4
- cfg/model/tcn.yaml +1 -1
- remfx/datasets.py +1 -1
- remfx/dcunet.py +0 -649
- remfx/dptnet.py +0 -459
- remfx/models.py +2 -2
cfg/model/dptnet.yaml
CHANGED
|
@@ -10,12 +10,13 @@ model:
|
|
| 10 |
network:
|
| 11 |
_target_: remfx.models.DPTNetModel
|
| 12 |
n_src: 1
|
| 13 |
-
|
| 14 |
-
|
| 15 |
chunk_size: 100
|
| 16 |
-
n_repeats:
|
| 17 |
fb_name: "free"
|
| 18 |
kernel_size: 16
|
| 19 |
-
n_filters:
|
|
|
|
| 20 |
sample_rate: ${sample_rate}
|
| 21 |
num_bins: 1025
|
|
|
|
| 10 |
network:
|
| 11 |
_target_: remfx.models.DPTNetModel
|
| 12 |
n_src: 1
|
| 13 |
+
in_chan: 64
|
| 14 |
+
out_chan: 64
|
| 15 |
chunk_size: 100
|
| 16 |
+
n_repeats: 2
|
| 17 |
fb_name: "free"
|
| 18 |
kernel_size: 16
|
| 19 |
+
n_filters: 64
|
| 20 |
+
stride: 8
|
| 21 |
sample_rate: ${sample_rate}
|
| 22 |
num_bins: 1025
|
cfg/model/tcn.yaml
CHANGED
|
@@ -13,7 +13,7 @@ model:
|
|
| 13 |
noutputs: 1
|
| 14 |
nblocks: 20
|
| 15 |
channel_growth: 0
|
| 16 |
-
channel_width:
|
| 17 |
kernel_size: 7
|
| 18 |
stack_size: 10
|
| 19 |
dilation_growth: 2
|
|
|
|
| 13 |
noutputs: 1
|
| 14 |
nblocks: 20
|
| 15 |
channel_growth: 0
|
| 16 |
+
channel_width: 64
|
| 17 |
kernel_size: 7
|
| 18 |
stack_size: 10
|
| 19 |
dilation_growth: 2
|
remfx/datasets.py
CHANGED
|
@@ -295,7 +295,7 @@ class EffectDataset(Dataset):
|
|
| 295 |
|
| 296 |
# Up to max_kept_effects
|
| 297 |
if self.max_kept_effects != -1:
|
| 298 |
-
num_kept_effects = int(torch.rand(1).item() * (self.max_kept_effects))
|
| 299 |
else:
|
| 300 |
num_kept_effects = len(self.effects_to_keep)
|
| 301 |
effect_indices = effect_indices[:num_kept_effects]
|
|
|
|
| 295 |
|
| 296 |
# Up to max_kept_effects
|
| 297 |
if self.max_kept_effects != -1:
|
| 298 |
+
num_kept_effects = int(torch.rand(1).item() * (self.max_kept_effects))
|
| 299 |
else:
|
| 300 |
num_kept_effects = len(self.effects_to_keep)
|
| 301 |
effect_indices = effect_indices[:num_kept_effects]
|
remfx/dcunet.py
DELETED
|
@@ -1,649 +0,0 @@
|
|
| 1 |
-
# Adapted from https://github.com/AppleHolic/source_separation/tree/master/source_separation
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
import torch.nn.functional as F
|
| 7 |
-
import numpy as np
|
| 8 |
-
from torch.nn.init import calculate_gain
|
| 9 |
-
from typing import Tuple
|
| 10 |
-
from scipy.signal import get_window
|
| 11 |
-
from librosa.util import pad_center
|
| 12 |
-
from remfx.utils import single, concat_complex
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
class ComplexConvBlock(nn.Module):
|
| 16 |
-
"""
|
| 17 |
-
Convolution block
|
| 18 |
-
"""
|
| 19 |
-
|
| 20 |
-
def __init__(
|
| 21 |
-
self,
|
| 22 |
-
in_channels: int,
|
| 23 |
-
out_channels: int,
|
| 24 |
-
kernel_size: int,
|
| 25 |
-
padding: int = 0,
|
| 26 |
-
layers: int = 4,
|
| 27 |
-
bn_func=nn.BatchNorm1d,
|
| 28 |
-
act_func=nn.LeakyReLU,
|
| 29 |
-
skip_res: bool = False,
|
| 30 |
-
):
|
| 31 |
-
super().__init__()
|
| 32 |
-
# modules
|
| 33 |
-
self.blocks = nn.ModuleList()
|
| 34 |
-
self.skip_res = skip_res
|
| 35 |
-
|
| 36 |
-
for idx in range(layers):
|
| 37 |
-
in_ = in_channels if idx == 0 else out_channels
|
| 38 |
-
self.blocks.append(
|
| 39 |
-
nn.Sequential(
|
| 40 |
-
*[
|
| 41 |
-
bn_func(in_),
|
| 42 |
-
act_func(),
|
| 43 |
-
ComplexConv1d(in_, out_channels, kernel_size, padding=padding),
|
| 44 |
-
]
|
| 45 |
-
)
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
def forward(self, x: torch.tensor) -> torch.tensor:
|
| 49 |
-
temp = x
|
| 50 |
-
for idx, block in enumerate(self.blocks):
|
| 51 |
-
x = block(x)
|
| 52 |
-
|
| 53 |
-
if temp.size() != x.size() or self.skip_res:
|
| 54 |
-
return x
|
| 55 |
-
else:
|
| 56 |
-
return x + temp
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
class SpectrogramUnet(nn.Module):
|
| 60 |
-
def __init__(
|
| 61 |
-
self,
|
| 62 |
-
spec_dim: int,
|
| 63 |
-
hidden_dim: int,
|
| 64 |
-
filter_len: int,
|
| 65 |
-
hop_len: int,
|
| 66 |
-
layers: int = 3,
|
| 67 |
-
block_layers: int = 3,
|
| 68 |
-
kernel_size: int = 5,
|
| 69 |
-
is_mask: bool = False,
|
| 70 |
-
norm: str = "bn",
|
| 71 |
-
act: str = "tanh",
|
| 72 |
-
):
|
| 73 |
-
super().__init__()
|
| 74 |
-
self.layers = layers
|
| 75 |
-
self.is_mask = is_mask
|
| 76 |
-
|
| 77 |
-
# stft modules
|
| 78 |
-
self.stft = STFT(filter_len, hop_len)
|
| 79 |
-
|
| 80 |
-
if norm == "bn":
|
| 81 |
-
self.bn_func = nn.BatchNorm1d
|
| 82 |
-
elif norm == "ins":
|
| 83 |
-
self.bn_func = lambda x: nn.InstanceNorm1d(x, affine=True)
|
| 84 |
-
else:
|
| 85 |
-
raise NotImplementedError("{} is not implemented !".format(norm))
|
| 86 |
-
|
| 87 |
-
if act == "tanh":
|
| 88 |
-
self.act_func = nn.Tanh
|
| 89 |
-
self.act_out = nn.Tanh
|
| 90 |
-
elif act == "comp":
|
| 91 |
-
self.act_func = ComplexActLayer
|
| 92 |
-
self.act_out = lambda: ComplexActLayer(is_out=True)
|
| 93 |
-
else:
|
| 94 |
-
raise NotImplementedError("{} is not implemented !".format(act))
|
| 95 |
-
|
| 96 |
-
# prev conv
|
| 97 |
-
self.prev_conv = ComplexConv1d(spec_dim * 2, hidden_dim, 1)
|
| 98 |
-
|
| 99 |
-
# down
|
| 100 |
-
self.down = nn.ModuleList()
|
| 101 |
-
self.down_pool = nn.MaxPool1d(3, stride=2, padding=1)
|
| 102 |
-
for idx in range(self.layers):
|
| 103 |
-
block = ComplexConvBlock(
|
| 104 |
-
hidden_dim,
|
| 105 |
-
hidden_dim,
|
| 106 |
-
kernel_size=kernel_size,
|
| 107 |
-
padding=kernel_size // 2,
|
| 108 |
-
bn_func=self.bn_func,
|
| 109 |
-
act_func=self.act_func,
|
| 110 |
-
layers=block_layers,
|
| 111 |
-
)
|
| 112 |
-
self.down.append(block)
|
| 113 |
-
|
| 114 |
-
# up
|
| 115 |
-
self.up = nn.ModuleList()
|
| 116 |
-
for idx in range(self.layers):
|
| 117 |
-
in_c = hidden_dim if idx == 0 else hidden_dim * 2
|
| 118 |
-
self.up.append(
|
| 119 |
-
nn.Sequential(
|
| 120 |
-
ComplexConvBlock(
|
| 121 |
-
in_c,
|
| 122 |
-
hidden_dim,
|
| 123 |
-
kernel_size=kernel_size,
|
| 124 |
-
padding=kernel_size // 2,
|
| 125 |
-
bn_func=self.bn_func,
|
| 126 |
-
act_func=self.act_func,
|
| 127 |
-
layers=block_layers,
|
| 128 |
-
),
|
| 129 |
-
self.bn_func(hidden_dim),
|
| 130 |
-
self.act_func(),
|
| 131 |
-
ComplexTransposedConv1d(
|
| 132 |
-
hidden_dim, hidden_dim, kernel_size=2, stride=2
|
| 133 |
-
),
|
| 134 |
-
)
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
# out_conv
|
| 138 |
-
self.out_conv = nn.Sequential(
|
| 139 |
-
ComplexConvBlock(
|
| 140 |
-
hidden_dim * 2,
|
| 141 |
-
spec_dim * 2,
|
| 142 |
-
kernel_size=kernel_size,
|
| 143 |
-
padding=kernel_size // 2,
|
| 144 |
-
bn_func=self.bn_func,
|
| 145 |
-
act_func=self.act_func,
|
| 146 |
-
),
|
| 147 |
-
self.bn_func(spec_dim * 2),
|
| 148 |
-
self.act_func(),
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
# refine conv
|
| 152 |
-
self.refine_conv = nn.Sequential(
|
| 153 |
-
ComplexConvBlock(
|
| 154 |
-
spec_dim * 4,
|
| 155 |
-
spec_dim * 2,
|
| 156 |
-
kernel_size=kernel_size,
|
| 157 |
-
padding=kernel_size // 2,
|
| 158 |
-
bn_func=self.bn_func,
|
| 159 |
-
act_func=self.act_func,
|
| 160 |
-
),
|
| 161 |
-
self.bn_func(spec_dim * 2),
|
| 162 |
-
self.act_func(),
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
def log_stft(self, wav):
|
| 166 |
-
# stft
|
| 167 |
-
mag, phase = self.stft.transform(wav)
|
| 168 |
-
return torch.log(mag + 1), phase
|
| 169 |
-
|
| 170 |
-
def exp_istft(self, log_mag, phase):
|
| 171 |
-
# exp
|
| 172 |
-
mag = np.e**log_mag - 1
|
| 173 |
-
# istft
|
| 174 |
-
wav = self.stft.inverse(mag, phase)
|
| 175 |
-
return wav
|
| 176 |
-
|
| 177 |
-
def adjust_diff(self, x, target):
|
| 178 |
-
size_diff = target.size()[-1] - x.size()[-1]
|
| 179 |
-
assert size_diff >= 0
|
| 180 |
-
if size_diff > 0:
|
| 181 |
-
x = F.pad(
|
| 182 |
-
x.unsqueeze(1), (size_diff // 2, size_diff // 2), "reflect"
|
| 183 |
-
).squeeze(1)
|
| 184 |
-
return x
|
| 185 |
-
|
| 186 |
-
def masking(self, mag, phase, origin_mag, origin_phase):
|
| 187 |
-
abs_mag = torch.abs(mag)
|
| 188 |
-
mag_mask = torch.tanh(abs_mag)
|
| 189 |
-
phase_mask = mag / abs_mag
|
| 190 |
-
|
| 191 |
-
# masking
|
| 192 |
-
mag = mag_mask * origin_mag
|
| 193 |
-
phase = phase_mask * (origin_phase + phase)
|
| 194 |
-
return mag, phase
|
| 195 |
-
|
| 196 |
-
def forward(self, wav):
|
| 197 |
-
# stft
|
| 198 |
-
origin_mag, origin_phase = self.log_stft(wav)
|
| 199 |
-
origin_x = torch.cat([origin_mag, origin_phase], dim=1)
|
| 200 |
-
|
| 201 |
-
# prev
|
| 202 |
-
x = self.prev_conv(origin_x)
|
| 203 |
-
|
| 204 |
-
# body
|
| 205 |
-
# down
|
| 206 |
-
down_cache = []
|
| 207 |
-
for idx, block in enumerate(self.down):
|
| 208 |
-
x = block(x)
|
| 209 |
-
down_cache.append(x)
|
| 210 |
-
x = self.down_pool(x)
|
| 211 |
-
|
| 212 |
-
# up
|
| 213 |
-
for idx, block in enumerate(self.up):
|
| 214 |
-
x = block(x)
|
| 215 |
-
res = F.interpolate(
|
| 216 |
-
down_cache[self.layers - (idx + 1)],
|
| 217 |
-
size=[x.size()[2]],
|
| 218 |
-
mode="linear",
|
| 219 |
-
align_corners=False,
|
| 220 |
-
)
|
| 221 |
-
x = concat_complex(x, res, dim=1)
|
| 222 |
-
|
| 223 |
-
# match spec dimension
|
| 224 |
-
x = self.out_conv(x)
|
| 225 |
-
if origin_mag.size(2) != x.size(2):
|
| 226 |
-
x = F.interpolate(
|
| 227 |
-
x, size=[origin_mag.size(2)], mode="linear", align_corners=False
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
# refine
|
| 231 |
-
x = self.refine_conv(concat_complex(x, origin_x))
|
| 232 |
-
|
| 233 |
-
def to_wav(stft):
|
| 234 |
-
mag, phase = stft.chunk(2, 1)
|
| 235 |
-
if self.is_mask:
|
| 236 |
-
mag, phase = self.masking(mag, phase, origin_mag, origin_phase)
|
| 237 |
-
out = self.exp_istft(mag, phase)
|
| 238 |
-
out = self.adjust_diff(out, wav)
|
| 239 |
-
return out
|
| 240 |
-
|
| 241 |
-
refine_wav = to_wav(x)
|
| 242 |
-
|
| 243 |
-
return refine_wav
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
class RefineSpectrogramUnet(SpectrogramUnet):
|
| 247 |
-
def __init__(
|
| 248 |
-
self,
|
| 249 |
-
spec_dim: int,
|
| 250 |
-
hidden_dim: int,
|
| 251 |
-
filter_len: int,
|
| 252 |
-
hop_len: int,
|
| 253 |
-
layers: int = 4,
|
| 254 |
-
block_layers: int = 4,
|
| 255 |
-
kernel_size: int = 3,
|
| 256 |
-
is_mask: bool = True,
|
| 257 |
-
norm: str = "ins",
|
| 258 |
-
act: str = "comp",
|
| 259 |
-
refine_layers: int = 1,
|
| 260 |
-
add_spec_results: bool = False,
|
| 261 |
-
):
|
| 262 |
-
super().__init__(
|
| 263 |
-
spec_dim,
|
| 264 |
-
hidden_dim,
|
| 265 |
-
filter_len,
|
| 266 |
-
hop_len,
|
| 267 |
-
layers,
|
| 268 |
-
block_layers,
|
| 269 |
-
kernel_size,
|
| 270 |
-
is_mask,
|
| 271 |
-
norm,
|
| 272 |
-
act,
|
| 273 |
-
)
|
| 274 |
-
self.add_spec_results = add_spec_results
|
| 275 |
-
# refine conv
|
| 276 |
-
self.refine_conv = nn.ModuleList(
|
| 277 |
-
[
|
| 278 |
-
nn.Sequential(
|
| 279 |
-
ComplexConvBlock(
|
| 280 |
-
spec_dim * 2,
|
| 281 |
-
spec_dim * 2,
|
| 282 |
-
kernel_size=kernel_size,
|
| 283 |
-
padding=kernel_size // 2,
|
| 284 |
-
bn_func=self.bn_func,
|
| 285 |
-
act_func=self.act_func,
|
| 286 |
-
),
|
| 287 |
-
self.bn_func(spec_dim * 2),
|
| 288 |
-
self.act_func(),
|
| 289 |
-
)
|
| 290 |
-
]
|
| 291 |
-
* refine_layers
|
| 292 |
-
)
|
| 293 |
-
|
| 294 |
-
def forward(self, wav):
|
| 295 |
-
# stft
|
| 296 |
-
origin_mag, origin_phase = self.log_stft(wav)
|
| 297 |
-
origin_x = torch.cat([origin_mag, origin_phase], dim=1)
|
| 298 |
-
|
| 299 |
-
# prev
|
| 300 |
-
x = self.prev_conv(origin_x)
|
| 301 |
-
|
| 302 |
-
# body
|
| 303 |
-
# down
|
| 304 |
-
down_cache = []
|
| 305 |
-
for idx, block in enumerate(self.down):
|
| 306 |
-
x = block(x)
|
| 307 |
-
down_cache.append(x)
|
| 308 |
-
x = self.down_pool(x)
|
| 309 |
-
|
| 310 |
-
# up
|
| 311 |
-
for idx, block in enumerate(self.up):
|
| 312 |
-
x = block(x)
|
| 313 |
-
res = F.interpolate(
|
| 314 |
-
down_cache[self.layers - (idx + 1)],
|
| 315 |
-
size=[x.size()[2]],
|
| 316 |
-
mode="linear",
|
| 317 |
-
align_corners=False,
|
| 318 |
-
)
|
| 319 |
-
x = concat_complex(x, res, dim=1)
|
| 320 |
-
|
| 321 |
-
# match spec dimension
|
| 322 |
-
x = self.out_conv(x)
|
| 323 |
-
if origin_mag.size(2) != x.size(2):
|
| 324 |
-
x = F.interpolate(
|
| 325 |
-
x, size=[origin_mag.size(2)], mode="linear", align_corners=False
|
| 326 |
-
)
|
| 327 |
-
|
| 328 |
-
# refine
|
| 329 |
-
for idx, refine_module in enumerate(self.refine_conv):
|
| 330 |
-
x = refine_module(x)
|
| 331 |
-
mag, phase = x.chunk(2, 1)
|
| 332 |
-
mag, phase = self.masking(mag, phase, origin_mag, origin_phase)
|
| 333 |
-
if idx < len(self.refine_conv) - 1:
|
| 334 |
-
x = torch.cat([mag, phase], dim=1)
|
| 335 |
-
|
| 336 |
-
# clamp phase
|
| 337 |
-
phase = phase.clamp(-np.pi, np.pi)
|
| 338 |
-
|
| 339 |
-
out = self.exp_istft(mag, phase)
|
| 340 |
-
out = self.adjust_diff(out, wav)
|
| 341 |
-
|
| 342 |
-
if self.add_spec_results:
|
| 343 |
-
out = (out, mag, phase)
|
| 344 |
-
|
| 345 |
-
return out
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
class _ComplexConvNd(nn.Module):
|
| 349 |
-
"""
|
| 350 |
-
Implement Complex Convolution
|
| 351 |
-
A: real weight
|
| 352 |
-
B: img weight
|
| 353 |
-
"""
|
| 354 |
-
|
| 355 |
-
def __init__(
|
| 356 |
-
self,
|
| 357 |
-
in_channels,
|
| 358 |
-
out_channels,
|
| 359 |
-
kernel_size,
|
| 360 |
-
stride,
|
| 361 |
-
padding,
|
| 362 |
-
dilation,
|
| 363 |
-
transposed,
|
| 364 |
-
output_padding,
|
| 365 |
-
):
|
| 366 |
-
super().__init__()
|
| 367 |
-
self.in_channels = in_channels
|
| 368 |
-
self.out_channels = out_channels
|
| 369 |
-
self.kernel_size = kernel_size
|
| 370 |
-
self.stride = stride
|
| 371 |
-
self.padding = padding
|
| 372 |
-
self.dilation = dilation
|
| 373 |
-
self.output_padding = output_padding
|
| 374 |
-
self.transposed = transposed
|
| 375 |
-
|
| 376 |
-
self.A = self.make_weight(in_channels, out_channels, kernel_size)
|
| 377 |
-
self.B = self.make_weight(in_channels, out_channels, kernel_size)
|
| 378 |
-
|
| 379 |
-
self.reset_parameters()
|
| 380 |
-
|
| 381 |
-
def make_weight(self, in_ch, out_ch, kernel_size):
|
| 382 |
-
if self.transposed:
|
| 383 |
-
tensor = nn.Parameter(torch.Tensor(in_ch, out_ch // 2, *kernel_size))
|
| 384 |
-
else:
|
| 385 |
-
tensor = nn.Parameter(torch.Tensor(out_ch, in_ch // 2, *kernel_size))
|
| 386 |
-
return tensor
|
| 387 |
-
|
| 388 |
-
def reset_parameters(self):
|
| 389 |
-
# init real weight
|
| 390 |
-
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.A)
|
| 391 |
-
|
| 392 |
-
# init A
|
| 393 |
-
gain = calculate_gain("leaky_relu", 0)
|
| 394 |
-
std = gain / np.sqrt(fan_in)
|
| 395 |
-
bound = np.sqrt(3.0) * std
|
| 396 |
-
|
| 397 |
-
with torch.no_grad():
|
| 398 |
-
# TODO: find more stable initial values
|
| 399 |
-
self.A.uniform_(-bound * (1 / (np.pi**2)), bound * (1 / (np.pi**2)))
|
| 400 |
-
#
|
| 401 |
-
# B is initialized by pi
|
| 402 |
-
# -pi and pi is too big, so it is powed by -1
|
| 403 |
-
self.B.uniform_(-1 / np.pi, 1 / np.pi)
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
class ComplexConv1d(_ComplexConvNd):
|
| 407 |
-
"""
|
| 408 |
-
Complex Convolution 1d
|
| 409 |
-
"""
|
| 410 |
-
|
| 411 |
-
def __init__(
|
| 412 |
-
self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1
|
| 413 |
-
):
|
| 414 |
-
kernel_size = single(kernel_size)
|
| 415 |
-
stride = single(stride)
|
| 416 |
-
# edit padding
|
| 417 |
-
padding = padding
|
| 418 |
-
dilation = single(dilation)
|
| 419 |
-
super(ComplexConv1d, self).__init__(
|
| 420 |
-
in_channels,
|
| 421 |
-
out_channels,
|
| 422 |
-
kernel_size,
|
| 423 |
-
stride,
|
| 424 |
-
padding,
|
| 425 |
-
dilation,
|
| 426 |
-
False,
|
| 427 |
-
single(0),
|
| 428 |
-
)
|
| 429 |
-
|
| 430 |
-
def forward(self, x):
|
| 431 |
-
"""
|
| 432 |
-
Implemented complex convolution using combining 'grouped convolution' and
|
| 433 |
-
'real / img weight'
|
| 434 |
-
:param x: data (N, C, T) C is concatenated with C/2 real channels and C/2 idea channels
|
| 435 |
-
:return: complex conved result
|
| 436 |
-
"""
|
| 437 |
-
# adopt reflect padding
|
| 438 |
-
if self.padding:
|
| 439 |
-
x = F.pad(x, (self.padding, self.padding), "reflect")
|
| 440 |
-
|
| 441 |
-
# forward real
|
| 442 |
-
real_part = F.conv1d(
|
| 443 |
-
x,
|
| 444 |
-
self.A,
|
| 445 |
-
None,
|
| 446 |
-
stride=self.stride,
|
| 447 |
-
padding=0,
|
| 448 |
-
dilation=self.dilation,
|
| 449 |
-
groups=2,
|
| 450 |
-
)
|
| 451 |
-
|
| 452 |
-
# forward idea
|
| 453 |
-
spl = self.in_channels // 2
|
| 454 |
-
weight_B = torch.cat([self.B[:spl].data * (-1), self.B[spl:].data])
|
| 455 |
-
idea_part = F.conv1d(
|
| 456 |
-
x,
|
| 457 |
-
weight_B,
|
| 458 |
-
None,
|
| 459 |
-
stride=self.stride,
|
| 460 |
-
padding=0,
|
| 461 |
-
dilation=self.dilation,
|
| 462 |
-
groups=2,
|
| 463 |
-
)
|
| 464 |
-
|
| 465 |
-
return real_part + idea_part
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
class ComplexTransposedConv1d(_ComplexConvNd):
|
| 469 |
-
"""
|
| 470 |
-
Complex Transposed Convolution 1d
|
| 471 |
-
"""
|
| 472 |
-
|
| 473 |
-
def __init__(
|
| 474 |
-
self,
|
| 475 |
-
in_channels,
|
| 476 |
-
out_channels,
|
| 477 |
-
kernel_size,
|
| 478 |
-
stride=1,
|
| 479 |
-
padding=0,
|
| 480 |
-
output_padding=0,
|
| 481 |
-
dilation=1,
|
| 482 |
-
):
|
| 483 |
-
kernel_size = single(kernel_size)
|
| 484 |
-
stride = single(stride)
|
| 485 |
-
padding = padding
|
| 486 |
-
dilation = single(dilation)
|
| 487 |
-
super().__init__(
|
| 488 |
-
in_channels,
|
| 489 |
-
out_channels,
|
| 490 |
-
kernel_size,
|
| 491 |
-
stride,
|
| 492 |
-
padding,
|
| 493 |
-
dilation,
|
| 494 |
-
True,
|
| 495 |
-
output_padding,
|
| 496 |
-
)
|
| 497 |
-
|
| 498 |
-
def forward(self, x, output_size=None):
|
| 499 |
-
"""
|
| 500 |
-
Implemented complex transposed convolution using combining 'grouped convolution'
|
| 501 |
-
and 'real / img weight'
|
| 502 |
-
:param x: data (N, C, T) C is concatenated with C/2 real channels and C/2 idea channels
|
| 503 |
-
:return: complex transposed convolution result
|
| 504 |
-
"""
|
| 505 |
-
# forward real
|
| 506 |
-
if self.padding:
|
| 507 |
-
x = F.pad(x, (self.padding, self.padding), "reflect")
|
| 508 |
-
|
| 509 |
-
real_part = F.conv_transpose1d(
|
| 510 |
-
x,
|
| 511 |
-
self.A,
|
| 512 |
-
None,
|
| 513 |
-
stride=self.stride,
|
| 514 |
-
padding=0,
|
| 515 |
-
dilation=self.dilation,
|
| 516 |
-
groups=2,
|
| 517 |
-
)
|
| 518 |
-
|
| 519 |
-
# forward idea
|
| 520 |
-
spl = self.out_channels // 2
|
| 521 |
-
weight_B = torch.cat([self.B[:spl] * (-1), self.B[spl:]])
|
| 522 |
-
idea_part = F.conv_transpose1d(
|
| 523 |
-
x,
|
| 524 |
-
weight_B,
|
| 525 |
-
None,
|
| 526 |
-
stride=self.stride,
|
| 527 |
-
padding=0,
|
| 528 |
-
dilation=self.dilation,
|
| 529 |
-
groups=2,
|
| 530 |
-
)
|
| 531 |
-
|
| 532 |
-
if self.output_padding:
|
| 533 |
-
real_part = F.pad(
|
| 534 |
-
real_part, (self.output_padding, self.output_padding), "reflect"
|
| 535 |
-
)
|
| 536 |
-
idea_part = F.pad(
|
| 537 |
-
idea_part, (self.output_padding, self.output_padding), "reflect"
|
| 538 |
-
)
|
| 539 |
-
|
| 540 |
-
return real_part + idea_part
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
class ComplexActLayer(nn.Module):
|
| 544 |
-
"""
|
| 545 |
-
Activation differently 'real' part and 'img' part
|
| 546 |
-
In implemented DCUnet on this repository, Real part is activated to log space.
|
| 547 |
-
And Phase(img) part, it is distributed in [-pi, pi]...
|
| 548 |
-
"""
|
| 549 |
-
|
| 550 |
-
def forward(self, x):
|
| 551 |
-
real, img = x.chunk(2, 1)
|
| 552 |
-
return torch.cat([F.leaky_relu(real), torch.tanh(img) * np.pi], dim=1)
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
class STFT(nn.Module):
|
| 556 |
-
"""
|
| 557 |
-
Re-construct stft for calculating backward operation
|
| 558 |
-
refer on : https://github.com/pseeth/torch-stft/blob/master/torch_stft/stft.py
|
| 559 |
-
"""
|
| 560 |
-
|
| 561 |
-
def __init__(
|
| 562 |
-
self,
|
| 563 |
-
filter_length: int = 1024,
|
| 564 |
-
hop_length: int = 512,
|
| 565 |
-
win_length: int = None,
|
| 566 |
-
window: str = "hann",
|
| 567 |
-
):
|
| 568 |
-
super().__init__()
|
| 569 |
-
self.filter_length = filter_length
|
| 570 |
-
self.hop_length = hop_length
|
| 571 |
-
self.win_length = win_length if win_length else filter_length
|
| 572 |
-
self.window = window
|
| 573 |
-
self.pad_amount = self.filter_length // 2
|
| 574 |
-
|
| 575 |
-
# make fft window
|
| 576 |
-
assert filter_length >= self.win_length
|
| 577 |
-
# get window and zero center pad it to filter_length
|
| 578 |
-
fft_window = get_window(window, self.win_length, fftbins=True)
|
| 579 |
-
fft_window = pad_center(fft_window, filter_length)
|
| 580 |
-
fft_window = torch.from_numpy(fft_window).float()
|
| 581 |
-
|
| 582 |
-
# calculate fourer_basis
|
| 583 |
-
cut_off = int((self.filter_length / 2 + 1))
|
| 584 |
-
fourier_basis = np.fft.fft(np.eye(self.filter_length))
|
| 585 |
-
fourier_basis = np.vstack(
|
| 586 |
-
[np.real(fourier_basis[:cut_off, :]), np.imag(fourier_basis[:cut_off, :])]
|
| 587 |
-
)
|
| 588 |
-
|
| 589 |
-
# make forward & inverse basis
|
| 590 |
-
self.register_buffer("square_window", fft_window**2)
|
| 591 |
-
|
| 592 |
-
forward_basis = torch.FloatTensor(fourier_basis[:, np.newaxis, :]) * fft_window
|
| 593 |
-
inverse_basis = (
|
| 594 |
-
torch.FloatTensor(
|
| 595 |
-
np.linalg.pinv(self.filter_length / self.hop_length * fourier_basis).T[
|
| 596 |
-
:, np.newaxis, :
|
| 597 |
-
]
|
| 598 |
-
)
|
| 599 |
-
* fft_window
|
| 600 |
-
)
|
| 601 |
-
# torch.pinverse has a bug, so at this time, it is separated into two parts..
|
| 602 |
-
self.register_buffer("forward_basis", forward_basis)
|
| 603 |
-
self.register_buffer("inverse_basis", inverse_basis)
|
| 604 |
-
|
| 605 |
-
def transform(self, wav: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 606 |
-
# reflect padding
|
| 607 |
-
wav = wav.unsqueeze(1).unsqueeze(1)
|
| 608 |
-
wav = F.pad(
|
| 609 |
-
wav, (self.pad_amount, self.pad_amount, 0, 0), mode="reflect"
|
| 610 |
-
).squeeze(1)
|
| 611 |
-
|
| 612 |
-
# conv
|
| 613 |
-
forward_trans = F.conv1d(
|
| 614 |
-
wav, self.forward_basis, stride=self.hop_length, padding=0
|
| 615 |
-
)
|
| 616 |
-
real_part, imag_part = forward_trans.chunk(2, 1)
|
| 617 |
-
|
| 618 |
-
return torch.sqrt(real_part**2 + imag_part**2), torch.atan2(
|
| 619 |
-
imag_part.data, real_part.data
|
| 620 |
-
)
|
| 621 |
-
|
| 622 |
-
def inverse(
|
| 623 |
-
self, magnitude: torch.Tensor, phase: torch.Tensor, eps: float = 1e-9
|
| 624 |
-
) -> torch.Tensor:
|
| 625 |
-
comp = torch.cat(
|
| 626 |
-
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
|
| 627 |
-
)
|
| 628 |
-
inverse_transform = F.conv_transpose1d(
|
| 629 |
-
comp, self.inverse_basis, stride=self.hop_length, padding=0
|
| 630 |
-
)
|
| 631 |
-
|
| 632 |
-
# remove window effect
|
| 633 |
-
n_frames = comp.size(-1)
|
| 634 |
-
inverse_size = inverse_transform.size(-1)
|
| 635 |
-
|
| 636 |
-
window_filter = torch.ones(1, 1, n_frames).type_as(inverse_transform)
|
| 637 |
-
|
| 638 |
-
weight = self.square_window[: self.filter_length].unsqueeze(0).unsqueeze(0)
|
| 639 |
-
window_filter = F.conv_transpose1d(
|
| 640 |
-
window_filter, weight, stride=self.hop_length, padding=0
|
| 641 |
-
)
|
| 642 |
-
window_filter = window_filter.squeeze()[:inverse_size] + eps
|
| 643 |
-
|
| 644 |
-
inverse_transform /= window_filter
|
| 645 |
-
|
| 646 |
-
# scale by hop ratio
|
| 647 |
-
inverse_transform *= self.filter_length / self.hop_length
|
| 648 |
-
|
| 649 |
-
return inverse_transform[..., self.pad_amount : -self.pad_amount].squeeze(1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
remfx/dptnet.py
DELETED
|
@@ -1,459 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import torch.nn as nn
|
| 3 |
-
import torch.nn.functional as F
|
| 4 |
-
from torch.nn.modules.container import ModuleList
|
| 5 |
-
from torch.nn.modules.activation import MultiheadAttention
|
| 6 |
-
from torch.nn.modules.dropout import Dropout
|
| 7 |
-
from torch.nn.modules.linear import Linear
|
| 8 |
-
from torch.nn.modules.rnn import LSTM
|
| 9 |
-
from torch.nn.modules.normalization import LayerNorm
|
| 10 |
-
from torch.autograd import Variable
|
| 11 |
-
import copy
|
| 12 |
-
import math
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# adapted from https://github.com/ujscjj/DPTNet
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
class DPTNet_base(nn.Module):
|
| 19 |
-
def __init__(
|
| 20 |
-
self,
|
| 21 |
-
enc_dim,
|
| 22 |
-
feature_dim,
|
| 23 |
-
hidden_dim,
|
| 24 |
-
layer,
|
| 25 |
-
segment_size=250,
|
| 26 |
-
nspk=2,
|
| 27 |
-
win_len=2,
|
| 28 |
-
):
|
| 29 |
-
super().__init__()
|
| 30 |
-
# parameters
|
| 31 |
-
self.window = win_len
|
| 32 |
-
self.stride = self.window // 2
|
| 33 |
-
|
| 34 |
-
self.enc_dim = enc_dim
|
| 35 |
-
self.feature_dim = feature_dim
|
| 36 |
-
self.hidden_dim = hidden_dim
|
| 37 |
-
self.segment_size = segment_size
|
| 38 |
-
|
| 39 |
-
self.layer = layer
|
| 40 |
-
self.num_spk = nspk
|
| 41 |
-
self.eps = 1e-8
|
| 42 |
-
|
| 43 |
-
self.dpt_encoder = DPTEncoder(
|
| 44 |
-
n_filters=enc_dim,
|
| 45 |
-
window_size=win_len,
|
| 46 |
-
)
|
| 47 |
-
self.enc_LN = nn.GroupNorm(1, self.enc_dim, eps=1e-8)
|
| 48 |
-
self.dpt_separation = DPTSeparation(
|
| 49 |
-
self.enc_dim,
|
| 50 |
-
self.feature_dim,
|
| 51 |
-
self.hidden_dim,
|
| 52 |
-
self.num_spk,
|
| 53 |
-
self.layer,
|
| 54 |
-
self.segment_size,
|
| 55 |
-
)
|
| 56 |
-
|
| 57 |
-
self.mask_conv1x1 = nn.Conv1d(self.feature_dim, self.enc_dim, 1, bias=False)
|
| 58 |
-
self.decoder = DPTDecoder(n_filters=enc_dim, window_size=win_len)
|
| 59 |
-
|
| 60 |
-
def forward(self, mix):
|
| 61 |
-
"""
|
| 62 |
-
mix: shape (batch, T)
|
| 63 |
-
"""
|
| 64 |
-
batch_size = mix.shape[0]
|
| 65 |
-
mix = self.dpt_encoder(mix) # (B, E, L)
|
| 66 |
-
|
| 67 |
-
score_ = self.enc_LN(mix) # B, E, L
|
| 68 |
-
score_ = self.dpt_separation(score_) # B, nspk, T, N
|
| 69 |
-
score_ = (
|
| 70 |
-
score_.view(batch_size * self.num_spk, -1, self.feature_dim)
|
| 71 |
-
.transpose(1, 2)
|
| 72 |
-
.contiguous()
|
| 73 |
-
) # B*nspk, N, T
|
| 74 |
-
score = self.mask_conv1x1(score_) # [B*nspk, N, L] -> [B*nspk, E, L]
|
| 75 |
-
score = score.view(
|
| 76 |
-
batch_size, self.num_spk, self.enc_dim, -1
|
| 77 |
-
) # [B*nspk, E, L] -> [B, nspk, E, L]
|
| 78 |
-
est_mask = F.relu(score)
|
| 79 |
-
|
| 80 |
-
est_source = self.decoder(
|
| 81 |
-
mix, est_mask
|
| 82 |
-
) # [B, E, L] + [B, nspk, E, L]--> [B, nspk, T]
|
| 83 |
-
|
| 84 |
-
return est_source
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
class DPTEncoder(nn.Module):
|
| 88 |
-
def __init__(self, n_filters: int = 64, window_size: int = 2):
|
| 89 |
-
super().__init__()
|
| 90 |
-
self.conv = nn.Conv1d(
|
| 91 |
-
1, n_filters, kernel_size=window_size, stride=window_size // 2, bias=False
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
def forward(self, x):
|
| 95 |
-
x = x.unsqueeze(1)
|
| 96 |
-
x = F.relu(self.conv(x))
|
| 97 |
-
return x
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
class TransformerEncoderLayer(torch.nn.Module):
|
| 101 |
-
def __init__(
|
| 102 |
-
self, d_model, nhead, hidden_size, dim_feedforward, dropout, activation="relu"
|
| 103 |
-
):
|
| 104 |
-
super(TransformerEncoderLayer, self).__init__()
|
| 105 |
-
self.self_attn = MultiheadAttention(d_model, nhead, dropout=dropout)
|
| 106 |
-
|
| 107 |
-
# Implementation of improved part
|
| 108 |
-
self.lstm = LSTM(d_model, hidden_size, 1, bidirectional=True)
|
| 109 |
-
self.dropout = Dropout(dropout)
|
| 110 |
-
self.linear = Linear(hidden_size * 2, d_model)
|
| 111 |
-
|
| 112 |
-
self.norm1 = LayerNorm(d_model)
|
| 113 |
-
self.norm2 = LayerNorm(d_model)
|
| 114 |
-
self.dropout1 = Dropout(dropout)
|
| 115 |
-
self.dropout2 = Dropout(dropout)
|
| 116 |
-
|
| 117 |
-
self.activation = _get_activation_fn(activation)
|
| 118 |
-
|
| 119 |
-
def __setstate__(self, state):
|
| 120 |
-
if "activation" not in state:
|
| 121 |
-
state["activation"] = F.relu
|
| 122 |
-
super(TransformerEncoderLayer, self).__setstate__(state)
|
| 123 |
-
|
| 124 |
-
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
| 125 |
-
r"""Pass the input through the encoder layer.
|
| 126 |
-
Args:
|
| 127 |
-
src: the sequnce to the encoder layer (required).
|
| 128 |
-
src_mask: the mask for the src sequence (optional).
|
| 129 |
-
src_key_padding_mask: the mask for the src keys per batch (optional).
|
| 130 |
-
Shape:
|
| 131 |
-
see the docs in Transformer class.
|
| 132 |
-
"""
|
| 133 |
-
src2 = self.self_attn(
|
| 134 |
-
src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask
|
| 135 |
-
)[0]
|
| 136 |
-
src = src + self.dropout1(src2)
|
| 137 |
-
src = self.norm1(src)
|
| 138 |
-
src2 = self.linear(self.dropout(self.activation(self.lstm(src)[0])))
|
| 139 |
-
src = src + self.dropout2(src2)
|
| 140 |
-
src = self.norm2(src)
|
| 141 |
-
return src
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
def _get_clones(module, N):
|
| 145 |
-
return ModuleList([copy.deepcopy(module) for i in range(N)])
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
def _get_activation_fn(activation):
|
| 149 |
-
if activation == "relu":
|
| 150 |
-
return F.relu
|
| 151 |
-
elif activation == "gelu":
|
| 152 |
-
return F.gelu
|
| 153 |
-
|
| 154 |
-
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
class SingleTransformer(nn.Module):
|
| 158 |
-
"""
|
| 159 |
-
Container module for a single Transformer layer.
|
| 160 |
-
args: input_size: int, dimension of the input feature.
|
| 161 |
-
The input should have shape (batch, seq_len, input_size).
|
| 162 |
-
"""
|
| 163 |
-
|
| 164 |
-
def __init__(self, input_size, hidden_size, dropout):
|
| 165 |
-
super(SingleTransformer, self).__init__()
|
| 166 |
-
self.transformer = TransformerEncoderLayer(
|
| 167 |
-
d_model=input_size,
|
| 168 |
-
nhead=4,
|
| 169 |
-
hidden_size=hidden_size,
|
| 170 |
-
dim_feedforward=hidden_size * 2,
|
| 171 |
-
dropout=dropout,
|
| 172 |
-
)
|
| 173 |
-
|
| 174 |
-
def forward(self, input):
|
| 175 |
-
# input shape: batch, seq, dim
|
| 176 |
-
output = input
|
| 177 |
-
transformer_output = (
|
| 178 |
-
self.transformer(output.permute(1, 0, 2).contiguous())
|
| 179 |
-
.permute(1, 0, 2)
|
| 180 |
-
.contiguous()
|
| 181 |
-
)
|
| 182 |
-
return transformer_output
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
# dual-path transformer
|
| 186 |
-
class DPT(nn.Module):
|
| 187 |
-
"""
|
| 188 |
-
Deep dual-path transformer.
|
| 189 |
-
args:
|
| 190 |
-
input_size: int, dimension of the input feature. The input should have shape
|
| 191 |
-
(batch, seq_len, input_size).
|
| 192 |
-
hidden_size: int, dimension of the hidden state.
|
| 193 |
-
output_size: int, dimension of the output size.
|
| 194 |
-
num_layers: int, number of stacked Transformer layers. Default is 1.
|
| 195 |
-
dropout: float, dropout ratio. Default is 0.
|
| 196 |
-
"""
|
| 197 |
-
|
| 198 |
-
def __init__(self, input_size, hidden_size, output_size, num_layers=1, dropout=0):
|
| 199 |
-
super(DPT, self).__init__()
|
| 200 |
-
|
| 201 |
-
self.input_size = input_size
|
| 202 |
-
self.output_size = output_size
|
| 203 |
-
self.hidden_size = hidden_size
|
| 204 |
-
|
| 205 |
-
# dual-path transformer
|
| 206 |
-
self.row_transformer = nn.ModuleList([])
|
| 207 |
-
self.col_transformer = nn.ModuleList([])
|
| 208 |
-
for i in range(num_layers):
|
| 209 |
-
self.row_transformer.append(
|
| 210 |
-
SingleTransformer(input_size, hidden_size, dropout)
|
| 211 |
-
)
|
| 212 |
-
self.col_transformer.append(
|
| 213 |
-
SingleTransformer(input_size, hidden_size, dropout)
|
| 214 |
-
)
|
| 215 |
-
|
| 216 |
-
# output layer
|
| 217 |
-
self.output = nn.Sequential(nn.PReLU(), nn.Conv2d(input_size, output_size, 1))
|
| 218 |
-
|
| 219 |
-
def forward(self, input):
|
| 220 |
-
# input shape: batch, N, dim1, dim2
|
| 221 |
-
# apply transformer on dim1 first and then dim2
|
| 222 |
-
# output shape: B, output_size, dim1, dim2
|
| 223 |
-
# input = input.to(device)
|
| 224 |
-
batch_size, _, dim1, dim2 = input.shape
|
| 225 |
-
output = input
|
| 226 |
-
for i in range(len(self.row_transformer)):
|
| 227 |
-
row_input = (
|
| 228 |
-
output.permute(0, 3, 2, 1)
|
| 229 |
-
.contiguous()
|
| 230 |
-
.view(batch_size * dim2, dim1, -1)
|
| 231 |
-
) # B*dim2, dim1, N
|
| 232 |
-
row_output = self.row_transformer[i](row_input) # B*dim2, dim1, H
|
| 233 |
-
row_output = (
|
| 234 |
-
row_output.view(batch_size, dim2, dim1, -1)
|
| 235 |
-
.permute(0, 3, 2, 1)
|
| 236 |
-
.contiguous()
|
| 237 |
-
) # B, N, dim1, dim2
|
| 238 |
-
output = row_output
|
| 239 |
-
|
| 240 |
-
col_input = (
|
| 241 |
-
output.permute(0, 2, 3, 1)
|
| 242 |
-
.contiguous()
|
| 243 |
-
.view(batch_size * dim1, dim2, -1)
|
| 244 |
-
) # B*dim1, dim2, N
|
| 245 |
-
col_output = self.col_transformer[i](col_input) # B*dim1, dim2, H
|
| 246 |
-
col_output = (
|
| 247 |
-
col_output.view(batch_size, dim1, dim2, -1)
|
| 248 |
-
.permute(0, 3, 1, 2)
|
| 249 |
-
.contiguous()
|
| 250 |
-
) # B, N, dim1, dim2
|
| 251 |
-
output = col_output
|
| 252 |
-
|
| 253 |
-
output = self.output(output) # B, output_size, dim1, dim2
|
| 254 |
-
|
| 255 |
-
return output
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
# base module for deep DPT
|
| 259 |
-
class DPT_base(nn.Module):
|
| 260 |
-
def __init__(
|
| 261 |
-
self, input_dim, feature_dim, hidden_dim, num_spk=2, layer=6, segment_size=250
|
| 262 |
-
):
|
| 263 |
-
super(DPT_base, self).__init__()
|
| 264 |
-
|
| 265 |
-
self.input_dim = input_dim
|
| 266 |
-
self.feature_dim = feature_dim
|
| 267 |
-
self.hidden_dim = hidden_dim
|
| 268 |
-
|
| 269 |
-
self.layer = layer
|
| 270 |
-
self.segment_size = segment_size
|
| 271 |
-
self.num_spk = num_spk
|
| 272 |
-
|
| 273 |
-
self.eps = 1e-8
|
| 274 |
-
|
| 275 |
-
# bottleneck
|
| 276 |
-
self.BN = nn.Conv1d(self.input_dim, self.feature_dim, 1, bias=False)
|
| 277 |
-
|
| 278 |
-
# DPT model
|
| 279 |
-
self.DPT = DPT(
|
| 280 |
-
self.feature_dim,
|
| 281 |
-
self.hidden_dim,
|
| 282 |
-
self.feature_dim * self.num_spk,
|
| 283 |
-
num_layers=layer,
|
| 284 |
-
)
|
| 285 |
-
|
| 286 |
-
def pad_segment(self, input, segment_size):
|
| 287 |
-
# input is the features: (B, N, T)
|
| 288 |
-
batch_size, dim, seq_len = input.shape
|
| 289 |
-
segment_stride = segment_size // 2
|
| 290 |
-
|
| 291 |
-
rest = segment_size - (segment_stride + seq_len % segment_size) % segment_size
|
| 292 |
-
if rest > 0:
|
| 293 |
-
pad = Variable(torch.zeros(batch_size, dim, rest)).type(input.type())
|
| 294 |
-
input = torch.cat([input, pad], 2)
|
| 295 |
-
|
| 296 |
-
pad_aux = Variable(torch.zeros(batch_size, dim, segment_stride)).type(
|
| 297 |
-
input.type()
|
| 298 |
-
)
|
| 299 |
-
input = torch.cat([pad_aux, input, pad_aux], 2)
|
| 300 |
-
|
| 301 |
-
return input, rest
|
| 302 |
-
|
| 303 |
-
def split_feature(self, input, segment_size):
|
| 304 |
-
# split the feature into chunks of segment size
|
| 305 |
-
# input is the features: (B, N, T)
|
| 306 |
-
|
| 307 |
-
input, rest = self.pad_segment(input, segment_size)
|
| 308 |
-
batch_size, dim, seq_len = input.shape
|
| 309 |
-
segment_stride = segment_size // 2
|
| 310 |
-
|
| 311 |
-
segments1 = (
|
| 312 |
-
input[:, :, :-segment_stride]
|
| 313 |
-
.contiguous()
|
| 314 |
-
.view(batch_size, dim, -1, segment_size)
|
| 315 |
-
)
|
| 316 |
-
segments2 = (
|
| 317 |
-
input[:, :, segment_stride:]
|
| 318 |
-
.contiguous()
|
| 319 |
-
.view(batch_size, dim, -1, segment_size)
|
| 320 |
-
)
|
| 321 |
-
segments = (
|
| 322 |
-
torch.cat([segments1, segments2], 3)
|
| 323 |
-
.view(batch_size, dim, -1, segment_size)
|
| 324 |
-
.transpose(2, 3)
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
return segments.contiguous(), rest
|
| 328 |
-
|
| 329 |
-
def merge_feature(self, input, rest):
|
| 330 |
-
# merge the splitted features into full utterance
|
| 331 |
-
# input is the features: (B, N, L, K)
|
| 332 |
-
|
| 333 |
-
batch_size, dim, segment_size, _ = input.shape
|
| 334 |
-
segment_stride = segment_size // 2
|
| 335 |
-
input = (
|
| 336 |
-
input.transpose(2, 3)
|
| 337 |
-
.contiguous()
|
| 338 |
-
.view(batch_size, dim, -1, segment_size * 2)
|
| 339 |
-
) # B, N, K, L
|
| 340 |
-
|
| 341 |
-
input1 = (
|
| 342 |
-
input[:, :, :, :segment_size]
|
| 343 |
-
.contiguous()
|
| 344 |
-
.view(batch_size, dim, -1)[:, :, segment_stride:]
|
| 345 |
-
)
|
| 346 |
-
input2 = (
|
| 347 |
-
input[:, :, :, segment_size:]
|
| 348 |
-
.contiguous()
|
| 349 |
-
.view(batch_size, dim, -1)[:, :, :-segment_stride]
|
| 350 |
-
)
|
| 351 |
-
|
| 352 |
-
output = input1 + input2
|
| 353 |
-
if rest > 0:
|
| 354 |
-
output = output[:, :, :-rest]
|
| 355 |
-
|
| 356 |
-
return output.contiguous() # B, N, T
|
| 357 |
-
|
| 358 |
-
def forward(self, input):
|
| 359 |
-
pass
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
class DPTSeparation(DPT_base):
|
| 363 |
-
def __init__(self, *args, **kwargs):
|
| 364 |
-
super(DPTSeparation, self).__init__(*args, **kwargs)
|
| 365 |
-
|
| 366 |
-
# gated output layer
|
| 367 |
-
self.output = nn.Sequential(
|
| 368 |
-
nn.Conv1d(self.feature_dim, self.feature_dim, 1), nn.Tanh()
|
| 369 |
-
)
|
| 370 |
-
self.output_gate = nn.Sequential(
|
| 371 |
-
nn.Conv1d(self.feature_dim, self.feature_dim, 1), nn.Sigmoid()
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
def forward(self, input):
|
| 375 |
-
# input = input.to(device)
|
| 376 |
-
# input: (B, E, T)
|
| 377 |
-
batch_size, E, seq_length = input.shape
|
| 378 |
-
|
| 379 |
-
enc_feature = self.BN(input) # (B, E, L)-->(B, N, L)
|
| 380 |
-
# split the encoder output into overlapped, longer segments
|
| 381 |
-
enc_segments, enc_rest = self.split_feature(
|
| 382 |
-
enc_feature, self.segment_size
|
| 383 |
-
) # B, N, L, K: L is the segment_size
|
| 384 |
-
# print('enc_segments.shape {}'.format(enc_segments.shape))
|
| 385 |
-
# pass to DPT
|
| 386 |
-
output = self.DPT(enc_segments).view(
|
| 387 |
-
batch_size * self.num_spk, self.feature_dim, self.segment_size, -1
|
| 388 |
-
) # B*nspk, N, L, K
|
| 389 |
-
|
| 390 |
-
# overlap-and-add of the outputs
|
| 391 |
-
output = self.merge_feature(output, enc_rest) # B*nspk, N, T
|
| 392 |
-
|
| 393 |
-
# gated output layer for filter generation
|
| 394 |
-
bf_filter = self.output(output) * self.output_gate(output) # B*nspk, K, T
|
| 395 |
-
bf_filter = (
|
| 396 |
-
bf_filter.transpose(1, 2)
|
| 397 |
-
.contiguous()
|
| 398 |
-
.view(batch_size, self.num_spk, -1, self.feature_dim)
|
| 399 |
-
) # B, nspk, T, N
|
| 400 |
-
|
| 401 |
-
return bf_filter
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
class DPTDecoder(nn.Module):
|
| 405 |
-
def __init__(self, n_filters: int = 64, window_size: int = 2):
|
| 406 |
-
super().__init__()
|
| 407 |
-
self.W = window_size
|
| 408 |
-
self.basis_signals = nn.Linear(n_filters, window_size, bias=False)
|
| 409 |
-
|
| 410 |
-
def forward(self, mixture, mask):
|
| 411 |
-
"""
|
| 412 |
-
mixture: (batch, n_filters, L)
|
| 413 |
-
mask: (batch, sources, n_filters, L)
|
| 414 |
-
"""
|
| 415 |
-
source_w = torch.unsqueeze(mixture, 1) * mask # [B, C, E, L]
|
| 416 |
-
source_w = torch.transpose(source_w, 2, 3) # [B, C, L, E]
|
| 417 |
-
# S = DV
|
| 418 |
-
est_source = self.basis_signals(source_w) # [B, C, L, W]
|
| 419 |
-
est_source = overlap_and_add(est_source, self.W // 2) # B x C x T
|
| 420 |
-
return est_source
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
def overlap_and_add(signal, frame_step):
|
| 424 |
-
"""Reconstructs a signal from a framed representation.
|
| 425 |
-
Adds potentially overlapping frames of a signal with shape
|
| 426 |
-
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
|
| 427 |
-
The resulting tensor has shape `[..., output_size]` where
|
| 428 |
-
output_size = (frames - 1) * frame_step + frame_length
|
| 429 |
-
Args:
|
| 430 |
-
signal: A [..., frames, frame_length] Tensor.
|
| 431 |
-
All dimensions may be unknown, and rank must be at least 2.
|
| 432 |
-
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
|
| 433 |
-
Returns:
|
| 434 |
-
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's
|
| 435 |
-
inner-most two dimensions.
|
| 436 |
-
output_size = (frames - 1) * frame_step + frame_length
|
| 437 |
-
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
|
| 438 |
-
"""
|
| 439 |
-
outer_dimensions = signal.size()[:-2]
|
| 440 |
-
frames, frame_length = signal.size()[-2:]
|
| 441 |
-
|
| 442 |
-
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
|
| 443 |
-
subframe_step = frame_step // subframe_length
|
| 444 |
-
subframes_per_frame = frame_length // subframe_length
|
| 445 |
-
output_size = frame_step * (frames - 1) + frame_length
|
| 446 |
-
output_subframes = output_size // subframe_length
|
| 447 |
-
|
| 448 |
-
subframe_signal = signal.reshape(*outer_dimensions, -1, subframe_length)
|
| 449 |
-
|
| 450 |
-
frame = torch.arange(0, output_subframes).unfold(
|
| 451 |
-
0, subframes_per_frame, subframe_step
|
| 452 |
-
)
|
| 453 |
-
frame = signal.new_tensor(frame).long() # signal may in GPU or CPU
|
| 454 |
-
frame = frame.contiguous().view(-1)
|
| 455 |
-
|
| 456 |
-
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
|
| 457 |
-
result.index_add_(-2, frame, subframe_signal)
|
| 458 |
-
result = result.view(*outer_dimensions, -1)
|
| 459 |
-
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
remfx/models.py
CHANGED
|
@@ -226,7 +226,7 @@ class DCUNetModel(nn.Module):
|
|
| 226 |
|
| 227 |
def forward(self, batch):
|
| 228 |
x, target = batch
|
| 229 |
-
output = self.model(x.squeeze(1)) # B x
|
| 230 |
# Crop target to match output
|
| 231 |
if output.shape[-1] < target.shape[-1]:
|
| 232 |
target = causal_crop(target, output.shape[-1])
|
|
@@ -234,7 +234,7 @@ class DCUNetModel(nn.Module):
|
|
| 234 |
return loss, output
|
| 235 |
|
| 236 |
def sample(self, x: Tensor) -> Tensor:
|
| 237 |
-
output = self.model(x.squeeze(1)) # B x
|
| 238 |
return output
|
| 239 |
|
| 240 |
|
|
|
|
| 226 |
|
| 227 |
def forward(self, batch):
|
| 228 |
x, target = batch
|
| 229 |
+
output = self.model(x.squeeze(1)) # B x T
|
| 230 |
# Crop target to match output
|
| 231 |
if output.shape[-1] < target.shape[-1]:
|
| 232 |
target = causal_crop(target, output.shape[-1])
|
|
|
|
| 234 |
return loss, output
|
| 235 |
|
| 236 |
def sample(self, x: Tensor) -> Tensor:
|
| 237 |
+
output = self.model(x.squeeze(1)) # B x T
|
| 238 |
return output
|
| 239 |
|
| 240 |
|