File size: 6,509 Bytes
5ece1f8 2db7876 5ece1f8 ffbc3b8 5ece1f8 6f04e08 5ece1f8 df0c2c4 5ece1f8 e3461f9 5ece1f8 87e2eb0 5ece1f8 97786d3 5ece1f8 97786d3 5ece1f8 97786d3 5ece1f8 6f04e08 5ece1f8 6f04e08 5ece1f8 6f04e08 87e2eb0 5ece1f8 d011adf 0dd8eb1 ff46370 d011adf 0dd8eb1 5ece1f8 df0c2c4 0dd8eb1 df0c2c4 0dd8eb1 d011adf 0dd8eb1 df0c2c4 87e2eb0 df0c2c4 6f04e08 df0c2c4 6f04e08 df0c2c4 5ece1f8 df0c2c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import cv2
import numpy as np
import os
from ultralytics import YOLO
# Load the trained model
model = YOLO('best.pt')
# Define class names and colors
class_names = ['IHC', 'OHC-1', 'OHC-2', 'OHC-3']
colors = [
(255, 255, 255), # IHC - White
(255, 0, 0), # OHC-1 - Red
(0, 255, 0), # OHC-2 - Green
(0, 0, 255) # OHC-3 - Blue
]
color_codes = {name: color for name, color in zip(class_names, colors)}
# List of example images
example_paths = [
'./examples/images/example (1).png',
'./examples/images/example (2).png',
'./examples/images/example (3).png',
'./examples/images/example (4).png',
'./examples/images/example (5).png',
'./examples/images/example (6).png',
'./examples/images/example (7).png',
'./examples/images/example (8).png',
'./examples/images/example (9).png',
'./examples/images/example (10).png',
]
# Precompute hashes for example images
example_hashes = {}
for path in example_paths:
example_image = cv2.imread(path)
if example_image is not None:
hash_value = hash(example_image.tobytes())
example_hashes[hash_value] = path
# Function to draw ground truth boxes
def draw_ground_truth(image, annotation_file):
image_height, image_width = image.shape[:2]
annotations = []
with open(annotation_file, 'r') as f:
for line in f:
parts = line.strip().split()
if len(parts) == 5:
cls_id, x_center, y_center, width, height = map(float, parts)
annotations.append((int(cls_id), x_center, y_center, width, height))
image_gt = image.copy()
for cls_id, x_center, y_center, width, height in annotations:
x = int((x_center - width / 2) * image_width)
y = int((y_center - height / 2) * image_height)
w = int(width * image_width)
h = int(height * image_height)
color = colors[cls_id % len(colors)]
cv2.rectangle(image_gt, (x, y), (x + w, y + h), color, 2)
return image_gt
# Function to draw prediction boxes
def draw_predictions(image):
image_pred = image.copy()
results = model(image)
boxes = results[0].boxes.xyxy.cpu().numpy()
classes = results[0].boxes.cls.cpu().numpy()
names = results[0].names
for i in range(len(boxes)):
box = boxes[i]
class_id = int(classes[i])
class_name = names[class_id]
color = color_codes.get(class_name, (255, 255, 255))
cv2.rectangle(
image_pred,
(int(box[0]), int(box[1])),
(int(box[2]), int(box[3])),
color,
2
)
return image_pred
# Prediction function for Step 1
def predict(input_image):
image = np.array(input_image)
image_name = input_image.name if hasattr(input_image, 'name') else 'uploaded_image.png'
image_basename = os.path.basename(image_name)
annotation_name = os.path.splitext(image_basename)[0] + '.txt'
annotation_path = f'./examples/labels/{annotation_name}'
if os.path.exists(annotation_path):
image_gt = draw_ground_truth(image, annotation_path)
else:
image_gt = image.copy()
return image, image_gt
# Function for Step 2
def split_and_predict(input_image):
image = np.array(input_image)
h, w = image.shape[:2]
splits = [
image[0:h//2, 0:w//2],
image[0:h//2, w//2:w],
image[h//2:h, 0:w//2],
image[h//2:h, w//2:w]
]
predictions = []
for img in splits:
img_pred = draw_predictions(img)
predictions.append(img_pred)
return predictions
# Prediction function for Step 3
def predict_part(input_image):
image = np.array(input_image)
image_pred = draw_predictions(image)
image_name = input_image.name if hasattr(input_image, 'name') else 'selected_part.png'
image_basename = os.path.basename(image_name)
annotation_name = os.path.splitext(image_basename)[0] + '.txt'
annotation_path = f'./examples/labels/{annotation_name}'
if os.path.exists(annotation_path):
image_gt = draw_ground_truth(image, annotation_path)
gt_visibility = gr.update(visible=True)
else:
image_gt = None
gt_visibility = gr.update(visible=False)
return image_pred, image_gt, gt_visibility
# Create the HTML legend
legend_html = "<h3>Color Legend:</h3><div style='display: flex; align-items: center;'>"
for name, color in zip(class_names, colors):
color_rgb = f'rgb({color[0]},{color[1]},{color[2]})'
legend_html += (
f"<div style='margin-right: 15px; display: flex; align-items: center;'>"
f"<span style='color: {color_rgb}; font-size: 20px;'>█</span>"
f"<span style='margin-left: 5px;'>{name}</span>"
f"</div>"
)
legend_html += "</div>"
# Create Gradio interface
with gr.Blocks() as interface:
gr.Markdown("## Advanced Detection of Cochlear Hair Cells Using YOLOv10 in Auditory Diagnostics")
# Add the color legend
# gr.Markdown(legend_markdown)
gr.HTML(legend_html)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
gr.Examples(
examples=example_paths,
inputs=input_image,
label="Examples"
)
with gr.Column():
output_gt = gr.Image(type="numpy", label="Labeled Image")
input_image.change(
fn=predict,
inputs=input_image,
outputs=[input_image, output_gt],
)
split_button = gr.Button("Split Image and Show Predictions")
with gr.Row():
output_pred1 = gr.Image(type="numpy", label="Prediction Part 1")
output_pred2 = gr.Image(type="numpy", label="Prediction Part 2")
with gr.Row():
output_pred3 = gr.Image(type="numpy", label="Prediction Part 3")
output_pred4 = gr.Image(type="numpy", label="Prediction Part 4")
split_button.click(
fn=split_and_predict,
inputs=input_image,
outputs=[output_pred1, output_pred2, output_pred3, output_pred4],
)
selected_part = gr.Image(type="pil", label="Select Image Part for Detailed View")
part_pred = gr.Image(type="numpy", label="Prediction on Selected Part")
part_gt = gr.Image(type="numpy", label="Ground Truth on Selected Part", visible=False)
selected_part.change(
fn=predict_part,
inputs=selected_part,
outputs=[part_pred, part_gt, part_gt],
)
interface.launch() |