Spaces:
Runtime error
Runtime error
Ikpia
commited on
Commit
·
1dee604
1
Parent(s):
bfb03c8
commit
Browse files- Dockerfile +2 -0
- app/main.py +78 -1
- requirements.txt +1 -1
Dockerfile
CHANGED
@@ -9,6 +9,8 @@ COPY ./app ./app
|
|
9 |
COPY requirements.txt .
|
10 |
|
11 |
RUN pip install --upgrade pip && pip install -r requirements.txt
|
|
|
|
|
12 |
|
13 |
# ✅ Fix: Use a safe cache directory
|
14 |
ENV TRANSFORMERS_CACHE=/tmp/huggingface
|
|
|
9 |
COPY requirements.txt .
|
10 |
|
11 |
RUN pip install --upgrade pip && pip install -r requirements.txt
|
12 |
+
#Download spaCy English model
|
13 |
+
RUN python -m spacy download en_core_web_sm
|
14 |
|
15 |
# ✅ Fix: Use a safe cache directory
|
16 |
ENV TRANSFORMERS_CACHE=/tmp/huggingface
|
app/main.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
from app.model import model, tokenizer
|
@@ -48,3 +48,80 @@ If the user message or prompt is too long tell the user that you have received h
|
|
48 |
@app.get("/")
|
49 |
def read_root():
|
50 |
return {"message": "Welcome to my Hugging Face Space!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
from app.model import model, tokenizer
|
|
|
48 |
@app.get("/")
|
49 |
def read_root():
|
50 |
return {"message": "Welcome to my Hugging Face Space!"}
|
51 |
+
'''
|
52 |
+
|
53 |
+
from fastapi import FastAPI
|
54 |
+
from pydantic import BaseModel
|
55 |
+
from app.model import model, tokenizer # Ensure your model and tokenizer are imported from your app
|
56 |
+
import torch
|
57 |
+
import spacy
|
58 |
+
|
59 |
+
app = FastAPI()
|
60 |
+
|
61 |
+
# Load spaCy for name detection
|
62 |
+
nlp = spacy.load("en_core_web_sm")
|
63 |
+
|
64 |
+
class Prompt(BaseModel):
|
65 |
+
text: str
|
66 |
+
|
67 |
+
# Function to extract user's name from message
|
68 |
+
def extract_name(text: str) -> str:
|
69 |
+
doc = nlp(text)
|
70 |
+
for ent in doc.ents:
|
71 |
+
if ent.label_ == "PERSON":
|
72 |
+
return ent.text
|
73 |
+
lowered = text.lower()
|
74 |
+
if "my name is" in lowered:
|
75 |
+
return text.split("my name is")[-1].split(".")[0].strip().split()[0].capitalize()
|
76 |
+
elif "best," in lowered or "thanks," in lowered:
|
77 |
+
return text.strip().split()[-1].capitalize()
|
78 |
+
return ""
|
79 |
+
|
80 |
+
@app.post("/generate")
|
81 |
+
def generate(prompt: Prompt):
|
82 |
+
user_input = prompt.text.strip()
|
83 |
+
user_name = extract_name(user_input)
|
84 |
+
|
85 |
+
# Format the full prompt for the model
|
86 |
+
prompt_template = f"""
|
87 |
+
You are a professional human email assistant working for a company.
|
88 |
+
|
89 |
+
Your goal is to reply to user messages with helpful, professional, and clearly written email replies.
|
90 |
+
|
91 |
+
Follow these rules:
|
92 |
+
- NEVER mention you're an AI or a model.
|
93 |
+
- Use complete, natural, and formal English — sound like a real assistant.
|
94 |
+
- If the message includes a name (e.g., “My name is Grace” or ends with “Best, John”), politely address the person by that name.
|
95 |
+
- Be brief and respectful if the request is unclear or general, e.g., "Could you please clarify your request?"
|
96 |
+
- If the message contains specific details like claim numbers or appointment requests, acknowledge receipt and indicate further action will be taken.
|
97 |
+
- If the message is too long or complex, thank the user and say you'll get back to them soon, addressing them by name if provided.
|
98 |
+
- Always end with a polite closing, like "Best regards" or "Sincerely", without using placeholder names.
|
99 |
+
|
100 |
+
Here is the user's message:
|
101 |
+
\"\"\"{user_input}\"\"\"
|
102 |
+
|
103 |
+
Reply with a professional email below. Do not include explanations, examples, or placeholders.
|
104 |
+
"""
|
105 |
+
full_prompt = f"<s>[INST] {prompt_template.strip()} [/INST]"
|
106 |
+
|
107 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
108 |
+
inputs = tokenizer(full_prompt, return_tensors="pt").to(device)
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
outputs = model.generate(
|
112 |
+
**inputs,
|
113 |
+
max_new_tokens=256,
|
114 |
+
temperature=0.7,
|
115 |
+
top_p=0.9,
|
116 |
+
do_sample=True
|
117 |
+
)
|
118 |
+
|
119 |
+
# Decode and clean the result
|
120 |
+
response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
121 |
+
clean_response = response_text.split("[/INST]")[-1].strip().strip('"').strip()
|
122 |
+
|
123 |
+
return {"response": clean_response}
|
124 |
+
|
125 |
+
@app.get("/")
|
126 |
+
def read_root():
|
127 |
+
return {"message": "Welcome to my Hugging Face Space!"}
|
requirements.txt
CHANGED
@@ -9,6 +9,6 @@ datasets==2.18.0
|
|
9 |
fastapi==0.110.0
|
10 |
uvicorn==0.25.0
|
11 |
numpy<2.0
|
12 |
-
|
13 |
|
14 |
|
|
|
9 |
fastapi==0.110.0
|
10 |
uvicorn==0.25.0
|
11 |
numpy<2.0
|
12 |
+
spacy
|
13 |
|
14 |
|