Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	Upload 9 files
Browse files- app.py +80 -80
- examples/burger.jpg +0 -0
- examples/cheesecake.jpg +0 -0
- model.py +36 -35
- pretrained_effnetb2_feature_extractor_food101.pth +3 -0
    	
        app.py
    CHANGED
    
    | @@ -1,80 +1,80 @@ | |
| 1 | 
            -
            ### 1. Imports and class names setup ###
         | 
| 2 | 
            -
            import gradio as gr
         | 
| 3 | 
            -
            import os
         | 
| 4 | 
            -
            import torch
         | 
| 5 | 
            -
             | 
| 6 | 
            -
            from model import create_effnetb2_model
         | 
| 7 | 
            -
            from timeit import default_timer as timer
         | 
| 8 | 
            -
            from typing import Tuple, Dict
         | 
| 9 | 
            -
             | 
| 10 | 
            -
            # Setup class names
         | 
| 11 | 
            -
            with open("class_names.txt", "r") as f: # reading them in from class_names.txt
         | 
| 12 | 
            -
                class_names = [food_name.strip() for food_name in  f.readlines()]
         | 
| 13 | 
            -
             | 
| 14 | 
            -
            ### 2. Model and transforms preparation ###
         | 
| 15 | 
            -
             | 
| 16 | 
            -
            # Create model
         | 
| 17 | 
            -
            effnetb2, effnetb2_transforms = create_effnetb2_model(
         | 
| 18 | 
            -
                num_classes=101, # could also use len(class_names)
         | 
| 19 | 
            -
            )
         | 
| 20 | 
            -
             | 
| 21 | 
            -
            # Load saved weights
         | 
| 22 | 
            -
            effnetb2.load_state_dict(
         | 
| 23 | 
            -
                torch.load(
         | 
| 24 | 
            -
                    f="pretrained_effnetb2_feature_extractor_food101.pth",
         | 
| 25 | 
            -
                    map_location=torch.device("cpu"),  # load to CPU
         | 
| 26 | 
            -
                )
         | 
| 27 | 
            -
            )
         | 
| 28 | 
            -
             | 
| 29 | 
            -
            ### 3. Predict function ###
         | 
| 30 | 
            -
             | 
| 31 | 
            -
            # Create predict function
         | 
| 32 | 
            -
            def predict(img) -> Tuple[Dict, float]:
         | 
| 33 | 
            -
                """Transforms and performs a prediction on img and returns prediction and time taken.
         | 
| 34 | 
            -
                """
         | 
| 35 | 
            -
                # Start the timer
         | 
| 36 | 
            -
                start_time = timer()
         | 
| 37 | 
            -
             | 
| 38 | 
            -
                # Transform the target image and add a batch dimension
         | 
| 39 | 
            -
                img = effnetb2_transforms(img).unsqueeze(0)
         | 
| 40 | 
            -
             | 
| 41 | 
            -
                # Put model into evaluation mode and turn on inference mode
         | 
| 42 | 
            -
                effnetb2.eval()
         | 
| 43 | 
            -
                with torch.inference_mode():
         | 
| 44 | 
            -
                    # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
         | 
| 45 | 
            -
                    pred_probs = torch.softmax(effnetb2(img), dim=1)
         | 
| 46 | 
            -
             | 
| 47 | 
            -
                # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
         | 
| 48 | 
            -
                pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
         | 
| 49 | 
            -
             | 
| 50 | 
            -
                # Calculate the prediction time
         | 
| 51 | 
            -
                pred_time = round(timer() - start_time, 5)
         | 
| 52 | 
            -
             | 
| 53 | 
            -
                # Return the prediction dictionary and prediction time
         | 
| 54 | 
            -
                return pred_labels_and_probs, pred_time
         | 
| 55 | 
            -
             | 
| 56 | 
            -
            ### 4. Gradio app ###
         | 
| 57 | 
            -
             | 
| 58 | 
            -
            # Create title, description and article strings
         | 
| 59 | 
            -
            title = "FoodVision Big ππ"
         | 
| 60 | 
            -
            description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
         | 
| 61 | 
            -
             | 
| 62 | 
            -
            # Create examples list from "examples/" directory
         | 
| 63 | 
            -
            example_list = [["examples/" + example] for example in os.listdir("examples")]
         | 
| 64 | 
            -
             | 
| 65 | 
            -
            # Create Gradio interface
         | 
| 66 | 
            -
            demo = gr.Interface(
         | 
| 67 | 
            -
                fn=predict,
         | 
| 68 | 
            -
                inputs=gr.Image(type="pil"),
         | 
| 69 | 
            -
                outputs=[
         | 
| 70 | 
            -
                    gr.Label(num_top_classes=5, label="Predictions"),
         | 
| 71 | 
            -
                    gr.Number(label="Prediction time (s)"),
         | 
| 72 | 
            -
                ],
         | 
| 73 | 
            -
                examples=example_list,
         | 
| 74 | 
            -
                title=title,
         | 
| 75 | 
            -
                description=description,
         | 
| 76 | 
            -
                # article=article,
         | 
| 77 | 
            -
            )
         | 
| 78 | 
            -
             | 
| 79 | 
            -
            # Launch the app!
         | 
| 80 | 
            -
            demo.launch()
         | 
|  | |
| 1 | 
            +
            ### 1. Imports and class names setup ###
         | 
| 2 | 
            +
            import gradio as gr
         | 
| 3 | 
            +
            import os
         | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from model import create_effnetb2_model
         | 
| 7 | 
            +
            from timeit import default_timer as timer
         | 
| 8 | 
            +
            from typing import Tuple, Dict
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            # Setup class names
         | 
| 11 | 
            +
            with open("class_names.txt", "r") as f: # reading them in from class_names.txt
         | 
| 12 | 
            +
                class_names = [food_name.strip() for food_name in  f.readlines()]
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            ### 2. Model and transforms preparation ###
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            # Create model
         | 
| 17 | 
            +
            effnetb2, effnetb2_transforms = create_effnetb2_model(
         | 
| 18 | 
            +
                num_classes=101, # could also use len(class_names)
         | 
| 19 | 
            +
            )
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Load saved weights
         | 
| 22 | 
            +
            effnetb2.load_state_dict(
         | 
| 23 | 
            +
                torch.load(
         | 
| 24 | 
            +
                    f="pretrained_effnetb2_feature_extractor_food101.pth",
         | 
| 25 | 
            +
                    map_location=torch.device("cpu"),  # load to CPU
         | 
| 26 | 
            +
                )
         | 
| 27 | 
            +
            )
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            ### 3. Predict function ###
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            # Create predict function
         | 
| 32 | 
            +
            def predict(img) -> Tuple[Dict, float]:
         | 
| 33 | 
            +
                """Transforms and performs a prediction on img and returns prediction and time taken.
         | 
| 34 | 
            +
                """
         | 
| 35 | 
            +
                # Start the timer
         | 
| 36 | 
            +
                start_time = timer()
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                # Transform the target image and add a batch dimension
         | 
| 39 | 
            +
                img = effnetb2_transforms(img).unsqueeze(0)
         | 
| 40 | 
            +
             | 
| 41 | 
            +
                # Put model into evaluation mode and turn on inference mode
         | 
| 42 | 
            +
                effnetb2.eval()
         | 
| 43 | 
            +
                with torch.inference_mode():
         | 
| 44 | 
            +
                    # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
         | 
| 45 | 
            +
                    pred_probs = torch.softmax(effnetb2(img), dim=1)
         | 
| 46 | 
            +
             | 
| 47 | 
            +
                # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
         | 
| 48 | 
            +
                pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                # Calculate the prediction time
         | 
| 51 | 
            +
                pred_time = round(timer() - start_time, 5)
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                # Return the prediction dictionary and prediction time
         | 
| 54 | 
            +
                return pred_labels_and_probs, pred_time
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            ### 4. Gradio app ###
         | 
| 57 | 
            +
             | 
| 58 | 
            +
            # Create title, description and article strings
         | 
| 59 | 
            +
            title = "FoodVision Big ππ"
         | 
| 60 | 
            +
            description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
         | 
| 61 | 
            +
             | 
| 62 | 
            +
            # Create examples list from "examples/" directory
         | 
| 63 | 
            +
            example_list = [["examples/" + example] for example in os.listdir("examples")]
         | 
| 64 | 
            +
             | 
| 65 | 
            +
            # Create Gradio interface
         | 
| 66 | 
            +
            demo = gr.Interface(
         | 
| 67 | 
            +
                fn=predict,
         | 
| 68 | 
            +
                inputs=gr.Image(type="pil"),
         | 
| 69 | 
            +
                outputs=[
         | 
| 70 | 
            +
                    gr.Label(num_top_classes=5, label="Predictions"),
         | 
| 71 | 
            +
                    gr.Number(label="Prediction time (s)"),
         | 
| 72 | 
            +
                ],
         | 
| 73 | 
            +
                examples=example_list,
         | 
| 74 | 
            +
                title=title,
         | 
| 75 | 
            +
                description=description,
         | 
| 76 | 
            +
                # article=article,
         | 
| 77 | 
            +
            )
         | 
| 78 | 
            +
             | 
| 79 | 
            +
            # Launch the app!
         | 
| 80 | 
            +
            demo.launch()
         | 
    	
        examples/burger.jpg
    ADDED
    
    |   | 
    	
        examples/cheesecake.jpg
    ADDED
    
    |   | 
    	
        model.py
    CHANGED
    
    | @@ -1,35 +1,36 @@ | |
| 1 | 
            -
            import torch
         | 
| 2 | 
            -
            import torchvision
         | 
| 3 | 
            -
             | 
| 4 | 
            -
            from torch import nn
         | 
| 5 | 
            -
             | 
| 6 | 
            -
             | 
| 7 | 
            -
            def create_effnetb2_model(num_classes:int=3,
         | 
| 8 | 
            -
                                      seed:int=42):
         | 
| 9 | 
            -
                """Creates an EfficientNetB2 feature extractor model and transforms.
         | 
| 10 | 
            -
             | 
| 11 | 
            -
                Args:
         | 
| 12 | 
            -
                    num_classes (int, optional): number of classes in the classifier head.
         | 
| 13 | 
            -
                        Defaults to 3.
         | 
| 14 | 
            -
                    seed (int, optional): random seed value. Defaults to 42.
         | 
| 15 | 
            -
             | 
| 16 | 
            -
                Returns:
         | 
| 17 | 
            -
                    model (torch.nn.Module): EffNetB2 feature extractor model.
         | 
| 18 | 
            -
                    transforms (torchvision.transforms): EffNetB2 image transforms.
         | 
| 19 | 
            -
                """
         | 
| 20 | 
            -
                # Create EffNetB2 pretrained weights, transforms and model
         | 
| 21 | 
            -
                weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
         | 
| 22 | 
            -
                transforms = weights.transforms()
         | 
| 23 | 
            -
                model = torchvision.models.efficientnet_b2(weights=weights)
         | 
| 24 | 
            -
             | 
| 25 | 
            -
                # Freeze all layers in base model
         | 
| 26 | 
            -
                for param in model.parameters():
         | 
| 27 | 
            -
                    param.requires_grad = False
         | 
| 28 | 
            -
             | 
| 29 | 
            -
                # Change classifier head with random seed for reproducibility
         | 
| 30 | 
            -
                torch.manual_seed(seed)
         | 
| 31 | 
            -
                model.classifier = nn.Sequential(
         | 
| 32 | 
            -
                    nn.Dropout(p=0.3, inplace=True),
         | 
| 33 | 
            -
                    nn.Linear(in_features=1408, out_features=num_classes),
         | 
| 34 | 
            -
                )
         | 
| 35 | 
            -
             | 
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torchvision
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            from torch import nn
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            def create_effnetb2_model(num_classes:int=3,
         | 
| 8 | 
            +
                                      seed:int=42):
         | 
| 9 | 
            +
                """Creates an EfficientNetB2 feature extractor model and transforms.
         | 
| 10 | 
            +
             | 
| 11 | 
            +
                Args:
         | 
| 12 | 
            +
                    num_classes (int, optional): number of classes in the classifier head.
         | 
| 13 | 
            +
                        Defaults to 3.
         | 
| 14 | 
            +
                    seed (int, optional): random seed value. Defaults to 42.
         | 
| 15 | 
            +
             | 
| 16 | 
            +
                Returns:
         | 
| 17 | 
            +
                    model (torch.nn.Module): EffNetB2 feature extractor model.
         | 
| 18 | 
            +
                    transforms (torchvision.transforms): EffNetB2 image transforms.
         | 
| 19 | 
            +
                """
         | 
| 20 | 
            +
                # Create EffNetB2 pretrained weights, transforms and model
         | 
| 21 | 
            +
                weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
         | 
| 22 | 
            +
                transforms = weights.transforms()
         | 
| 23 | 
            +
                model = torchvision.models.efficientnet_b2(weights=weights)
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                # Freeze all layers in base model
         | 
| 26 | 
            +
                for param in model.parameters():
         | 
| 27 | 
            +
                    param.requires_grad = False
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                # Change classifier head with random seed for reproducibility
         | 
| 30 | 
            +
                torch.manual_seed(seed)
         | 
| 31 | 
            +
                model.classifier = nn.Sequential(
         | 
| 32 | 
            +
                    nn.Dropout(p=0.3, inplace=True),
         | 
| 33 | 
            +
                    nn.Linear(in_features=1408, out_features=num_classes),
         | 
| 34 | 
            +
                )
         | 
| 35 | 
            +
             | 
| 36 | 
            +
                return model, transforms
         | 
    	
        pretrained_effnetb2_feature_extractor_food101.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e05de434aa004ffcb2d82bd1fca54a2628e8fdcda893c6ec4e0332e54fd91b49
         | 
| 3 | 
            +
            size 31849018
         | 
