AfnanSD commited on
Commit
fe6f54b
Β·
verified Β·
1 Parent(s): 00a3a9f

Upload 9 files

Browse files
app.py CHANGED
@@ -1,80 +1,80 @@
1
- ### 1. Imports and class names setup ###
2
- import gradio as gr
3
- import os
4
- import torch
5
-
6
- from model import create_effnetb2_model
7
- from timeit import default_timer as timer
8
- from typing import Tuple, Dict
9
-
10
- # Setup class names
11
- with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
- class_names = [food_name.strip() for food_name in f.readlines()]
13
-
14
- ### 2. Model and transforms preparation ###
15
-
16
- # Create model
17
- effnetb2, effnetb2_transforms = create_effnetb2_model(
18
- num_classes=101, # could also use len(class_names)
19
- )
20
-
21
- # Load saved weights
22
- effnetb2.load_state_dict(
23
- torch.load(
24
- f="pretrained_effnetb2_feature_extractor_food101.pth",
25
- map_location=torch.device("cpu"), # load to CPU
26
- )
27
- )
28
-
29
- ### 3. Predict function ###
30
-
31
- # Create predict function
32
- def predict(img) -> Tuple[Dict, float]:
33
- """Transforms and performs a prediction on img and returns prediction and time taken.
34
- """
35
- # Start the timer
36
- start_time = timer()
37
-
38
- # Transform the target image and add a batch dimension
39
- img = effnetb2_transforms(img).unsqueeze(0)
40
-
41
- # Put model into evaluation mode and turn on inference mode
42
- effnetb2.eval()
43
- with torch.inference_mode():
44
- # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
45
- pred_probs = torch.softmax(effnetb2(img), dim=1)
46
-
47
- # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
48
- pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
49
-
50
- # Calculate the prediction time
51
- pred_time = round(timer() - start_time, 5)
52
-
53
- # Return the prediction dictionary and prediction time
54
- return pred_labels_and_probs, pred_time
55
-
56
- ### 4. Gradio app ###
57
-
58
- # Create title, description and article strings
59
- title = "FoodVision Big πŸ”πŸ‘"
60
- description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
61
-
62
- # Create examples list from "examples/" directory
63
- example_list = [["examples/" + example] for example in os.listdir("examples")]
64
-
65
- # Create Gradio interface
66
- demo = gr.Interface(
67
- fn=predict,
68
- inputs=gr.Image(type="pil"),
69
- outputs=[
70
- gr.Label(num_top_classes=5, label="Predictions"),
71
- gr.Number(label="Prediction time (s)"),
72
- ],
73
- examples=example_list,
74
- title=title,
75
- description=description,
76
- # article=article,
77
- )
78
-
79
- # Launch the app!
80
- demo.launch()
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_effnetb2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ with open("class_names.txt", "r") as f: # reading them in from class_names.txt
12
+ class_names = [food_name.strip() for food_name in f.readlines()]
13
+
14
+ ### 2. Model and transforms preparation ###
15
+
16
+ # Create model
17
+ effnetb2, effnetb2_transforms = create_effnetb2_model(
18
+ num_classes=101, # could also use len(class_names)
19
+ )
20
+
21
+ # Load saved weights
22
+ effnetb2.load_state_dict(
23
+ torch.load(
24
+ f="pretrained_effnetb2_feature_extractor_food101.pth",
25
+ map_location=torch.device("cpu"), # load to CPU
26
+ )
27
+ )
28
+
29
+ ### 3. Predict function ###
30
+
31
+ # Create predict function
32
+ def predict(img) -> Tuple[Dict, float]:
33
+ """Transforms and performs a prediction on img and returns prediction and time taken.
34
+ """
35
+ # Start the timer
36
+ start_time = timer()
37
+
38
+ # Transform the target image and add a batch dimension
39
+ img = effnetb2_transforms(img).unsqueeze(0)
40
+
41
+ # Put model into evaluation mode and turn on inference mode
42
+ effnetb2.eval()
43
+ with torch.inference_mode():
44
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
45
+ pred_probs = torch.softmax(effnetb2(img), dim=1)
46
+
47
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
48
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
49
+
50
+ # Calculate the prediction time
51
+ pred_time = round(timer() - start_time, 5)
52
+
53
+ # Return the prediction dictionary and prediction time
54
+ return pred_labels_and_probs, pred_time
55
+
56
+ ### 4. Gradio app ###
57
+
58
+ # Create title, description and article strings
59
+ title = "FoodVision Big πŸ”πŸ‘"
60
+ description = "An EfficientNetB2 feature extractor computer vision model to classify images of food into [101 different classes](https://github.com/mrdbourke/pytorch-deep-learning/blob/main/extras/food101_class_names.txt)."
61
+
62
+ # Create examples list from "examples/" directory
63
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
64
+
65
+ # Create Gradio interface
66
+ demo = gr.Interface(
67
+ fn=predict,
68
+ inputs=gr.Image(type="pil"),
69
+ outputs=[
70
+ gr.Label(num_top_classes=5, label="Predictions"),
71
+ gr.Number(label="Prediction time (s)"),
72
+ ],
73
+ examples=example_list,
74
+ title=title,
75
+ description=description,
76
+ # article=article,
77
+ )
78
+
79
+ # Launch the app!
80
+ demo.launch()
examples/burger.jpg ADDED
examples/cheesecake.jpg ADDED
model.py CHANGED
@@ -1,35 +1,36 @@
1
- import torch
2
- import torchvision
3
-
4
- from torch import nn
5
-
6
-
7
- def create_effnetb2_model(num_classes:int=3,
8
- seed:int=42):
9
- """Creates an EfficientNetB2 feature extractor model and transforms.
10
-
11
- Args:
12
- num_classes (int, optional): number of classes in the classifier head.
13
- Defaults to 3.
14
- seed (int, optional): random seed value. Defaults to 42.
15
-
16
- Returns:
17
- model (torch.nn.Module): EffNetB2 feature extractor model.
18
- transforms (torchvision.transforms): EffNetB2 image transforms.
19
- """
20
- # Create EffNetB2 pretrained weights, transforms and model
21
- weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
22
- transforms = weights.transforms()
23
- model = torchvision.models.efficientnet_b2(weights=weights)
24
-
25
- # Freeze all layers in base model
26
- for param in model.parameters():
27
- param.requires_grad = False
28
-
29
- # Change classifier head with random seed for reproducibility
30
- torch.manual_seed(seed)
31
- model.classifier = nn.Sequential(
32
- nn.Dropout(p=0.3, inplace=True),
33
- nn.Linear(in_features=1408, out_features=num_classes),
34
- )
35
- return model, transforms
 
 
1
+ import torch
2
+ import torchvision
3
+
4
+ from torch import nn
5
+
6
+
7
+ def create_effnetb2_model(num_classes:int=3,
8
+ seed:int=42):
9
+ """Creates an EfficientNetB2 feature extractor model and transforms.
10
+
11
+ Args:
12
+ num_classes (int, optional): number of classes in the classifier head.
13
+ Defaults to 3.
14
+ seed (int, optional): random seed value. Defaults to 42.
15
+
16
+ Returns:
17
+ model (torch.nn.Module): EffNetB2 feature extractor model.
18
+ transforms (torchvision.transforms): EffNetB2 image transforms.
19
+ """
20
+ # Create EffNetB2 pretrained weights, transforms and model
21
+ weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
22
+ transforms = weights.transforms()
23
+ model = torchvision.models.efficientnet_b2(weights=weights)
24
+
25
+ # Freeze all layers in base model
26
+ for param in model.parameters():
27
+ param.requires_grad = False
28
+
29
+ # Change classifier head with random seed for reproducibility
30
+ torch.manual_seed(seed)
31
+ model.classifier = nn.Sequential(
32
+ nn.Dropout(p=0.3, inplace=True),
33
+ nn.Linear(in_features=1408, out_features=num_classes),
34
+ )
35
+
36
+ return model, transforms
pretrained_effnetb2_feature_extractor_food101.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e05de434aa004ffcb2d82bd1fca54a2628e8fdcda893c6ec4e0332e54fd91b49
3
+ size 31849018