import gradio as gr import pandas as pd import io import pickle import matplotlib.pyplot as plt import seaborn as sns from lazypredict.Supervised import LazyClassifier, LazyRegressor from sklearn.model_selection import train_test_split from ydata_profiling import ProfileReport import tempfile import requests import json from openai import OpenAI # Added for Nebius AI Studio LLM integration def load_data(file_input): """Loads CSV data from either a local file upload or a public URL.""" if file_input is None: return None, None try: if hasattr(file_input, 'name'): file_path = file_input.name with open(file_path, 'rb') as f: file_bytes = f.read() df = pd.read_csv(io.BytesIO(file_bytes)) elif isinstance(file_input, str) and file_input.startswith('http'): response = requests.get(file_input) response.raise_for_status() df = pd.read_csv(io.StringIO(response.text)) else: return None, None # Extract column names here column_names = ", ".join(df.columns.tolist()) return df, column_names except Exception as e: gr.Warning(f"Failed to load or parse data: {e}") return None, None def update_detected_columns_display(file_data, url_data): """ Detects and displays column names from the uploaded file or URL as soon as the input changes, before the main analysis button is pressed. """ data_source = file_data if file_data is not None else url_data if data_source is None: return "" df, column_names = load_data(data_source) if column_names: return column_names else: return "No columns detected or error loading file. Please check the file format." def analyze_and_model(df, target_column): """Internal function to perform EDA, model training, and visualization.""" profile = ProfileReport(df, title="EDA Report", minimal=True) with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as temp_html: profile.to_file(temp_html.name) profile_path = temp_html.name X = df.drop(columns=[target_column]) y = df[target_column] task = "classification" if y.nunique() <= 10 else "regression" X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = LazyClassifier(ignore_warnings=True, verbose=0) if task == "classification" else LazyRegressor(ignore_warnings=True, verbose=0) models, _ = model.fit(X_train, X_test, y_train, y_test) sort_metric = "Accuracy" if task == "classification" else "R-Squared" best_model_name = models.sort_values(by=sort_metric, ascending=False).index[0] # Corrected indexing best_model = model.models[best_model_name] with tempfile.NamedTemporaryFile(delete=False, suffix=".pkl") as temp_pkl: pickle.dump(best_model, temp_pkl) pickle_path = temp_pkl.name plt.figure(figsize=(10, 6)) plot_column = "Accuracy" if task == "classification" else "R-Squared" sns.barplot(x=models[plot_column].head(10), y=models.head(10).index) plt.title(f"Top 10 Models by {plot_column}") plt.tight_layout() with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_png: plt.savefig(temp_png.name) plot_path = temp_png.name plt.close() models_reset = models.reset_index().rename(columns={'index': 'Model'}) return profile, profile_path, task, models_reset, plot_path, pickle_path def run_pipeline(data_source, target_column, nebius_api_key): """ This single function drives the entire application. It's exposed as the primary tool for the MCP server. :param data_source: A local file path (from gr.File) or a URL (from gr.Textbox). :param target_column: The name of the target column for prediction. :param nebius_api_key: The API key for Nebius AI Studio. """ # --- 1. Input Validation --- if not data_source or not target_column: error_msg = "Error: Data source and target column must be provided." gr.Warning(error_msg) return None, error_msg, None, None, None, "Please provide all inputs.", "No columns loaded." gr.Info("Starting analysis...") # --- 2. Data Loading --- df, column_names = load_data(data_source) if df is None: return None, "Error: Could not load data.", None, None, None, None, "No columns loaded." if target_column not in df.columns: error_msg = f"Error: Target column '{target_column}' not found in the dataset. Available: {column_names}" gr.Warning(error_msg) return None, error_msg, None, None, None, None, column_names # --- 3. Analysis and Modeling --- profile, profile_path, task, models_df, plot_path, pickle_path = analyze_and_model(df, target_column) # --- 4. Explanation with Nebius AI Studio LLM --- best_model_name = models_df.iloc[0]['Model'] # Corrected indexing llm_explanation = "AI explanation is unavailable. Please provide a Nebius AI Studio API key to enable this feature." # Generic fallback [1] if nebius_api_key: try: client = OpenAI( base_url="https://api.studio.nebius.com/v1/", api_key=nebius_api_key ) # Craft a prompt for the LLM [2] prompt_text = f"Explain and Summarize the significance of the top performing model, '{best_model_name}', for a {task} task in a data analysis context. Keep the explanation concise and professional. Analyse the report: {profile}." # Make the LLM call [2, 3] response = client.chat.completions.create( model="meta-llama/Llama-3.3-70B-Instruct", messages=[ {"role": "system", "content": "You are a helpful AI assistant that explains data science concepts. "}, {"role": "user", "content": prompt_text} ], temperature=0.6, max_tokens=512, top_p=0.9, extra_body={ "top_k": 50 } ) message_content = response.to_json() data = json.loads(message_content) llm_explanation = data['choices'][0]['message']['content'] except Exception as e: gr.Warning(f"Failed to get AI explanation: {e}. Please check your API key or try again later.") llm_explanation = "An error occurred while fetching AI explanation. Please check your API key or try again later." gr.Info("Analysis complete!") gr.Info(f'Profile report saved to: {profile_path}') return profile_path, task, models_df, plot_path, pickle_path, llm_explanation, column_names # --- Gradio UI --- with gr.Blocks(title="AutoML Trainer", theme=gr.themes.Soft()) as demo: gr.Markdown("## 🤖 AutoML Trainer") with gr.Row(): with gr.Column(scale=1): file_input = gr.File(label="Upload Local CSV File") url_input = gr.Textbox(label="Or Enter Public CSV URL", placeholder="e.g., https://.../data.csv") gr.Textbox(label="Sample CSV", value="https://raw.githubusercontent.com/daniel-was-taken/MCP_Project/refs/heads/master/collegePlace.csv") target_column_input = gr.Textbox(label="Enter Target Column Name", placeholder="e.g., approved") nebius_api_key_input = gr.Textbox(label="Nebius AI Studio API Key (Optional)", type="password", placeholder="Enter your API key for AI explanations") run_button = gr.Button("Run Analysis & AutoML", variant="primary") with gr.Column(scale=2): column_names_output = gr.Textbox(label="Detected Columns", interactive=False, lines=2) # New Textbox for column names task_output = gr.Textbox(label="Detected Task", interactive=False) llm_output = gr.Markdown(label="AI Explanation") metrics_output = gr.Dataframe(label="Model Performance Metrics") with gr.Row(): vis_output = gr.Image(label="Top Models Comparison") with gr.Column(): eda_output = gr.File(label="Download Full EDA Report") model_output = gr.File(label="Download Best Model (.pkl)") def process_inputs(file_data, url_data, target, api_key): data_source = file_data if file_data is not None else url_data return run_pipeline(data_source, target, api_key) file_input.change( fn=update_detected_columns_display, inputs=[file_input, url_input], outputs=column_names_output ) url_input.change( fn=update_detected_columns_display, inputs=[file_input, url_input], outputs=column_names_output ) run_button.click( fn=process_inputs, inputs=[file_input, url_input, target_column_input, nebius_api_key_input], outputs=[eda_output, task_output, metrics_output, vis_output, model_output, llm_output, column_names_output] ) demo.launch( server_name="0.0.0.0", server_port=7860, share=False, show_api=True, inbrowser=True, mcp_server=True )