--- title: Code Analysis MCP emoji: 👩‍💻 colorFrom: gray colorTo: yellow sdk: gradio sdk_version: 5.33.0 app_file: src/app.py tags: - mcp-server-track - code-analysis - openai - anthropic - mistral pinned: false license: apache-2.0 short_description: Generate quality metrics and a detailed report for your code --- # Code Analysis MCP Server This project is a Gradio-based MCP server that provides two code analysis functionalities: - **Code Quality Score**: Provides an averaged score across vulnerability, style, and quality for the provided code using top three AI providers (OpenAI, Anthropic, Mistral). - **Vulnerability Score**: Measures the likelihood of the code containing vulnerabilities. - **Style Score**: Measures the adherence to coding style guidelines. - **Quality Score**: Measures the overall quality of the code. - **Code Analysis Report**: Generates a detailed report using Claude Sonnet 4, providing insights about the provided code, including basic information and suggesting 5-10 potential fixes to improve the code. ## Video & Demo - **Gradio App URL**: https://agents-mcp-hackathon-code-analysis-mcp.hf.space - **MCP Server URL:** https://agents-mcp-hackathon-code-analysis-mcp.hf.space/gradio_api/mcp/sse - **Watch the demo video:** [Code Analysis MCP Demo (Agents MCP Hackathon)](https://www.youtube.com/watch?v=A4YWMMyJRsA) [![Watch the demo on YouTube](image.png)](https://youtu.be/A4YWMMyJRsA) ## Integration with MCP clients For clients that support SSE (e.g. Cursor, Windsurf, Cline), simply add the following configuration to your MCP config: ```json { "mcpServers": { "gradio": { "url": "https://agents-mcp-hackathon-code-analysis-mcp.hf.space/gradio_api/mcp/sse" } } } ``` For clients that dose not support SSE, first install Node.js. Then, you can use the following command: ```json { "mcpServers": { "gradio": { "command": "npx", "args": [ "mcp-remote", "https://agents-mcp-hackathon-code-analysis-mcp.hf.space/gradio_api/mcp/sse", "--transport", "sse-only" ] } } } ``` ## Sample Prompts Here are a few ways you can ask Cursor AI to use these tools: * "Can you give me a code quality score for this Python snippet?" * "Generate a code analysis report for the following JavaScript code." * "Analyze this code and tell me how to fix the top issues." * "What is the quality score of this code?" ## Local Setup and Running 1. Clone the repository. 2. Navigate to the project directory. 3. Install the required dependencies: ```bash pip install -r requirements.txt ``` 4. Set up the required environment variables for the API keys: ```bash export OPENAI_API_KEY=your_openai_api_key export ANTHROPIC_API_KEY=your_anthropic_api_key export MISTRAL_API_KEY=your_mistral_api_key ``` Replace `your_openai_api_key`, `your_anthropic_api_key`, and `your_mistral_api_key` with your actual API keys. 5. Run the application: ```bash python src/app.py ``` 6. The Gradio interface will be available at `http://127.0.0.1:7860/` and MCP server will be avaible at `http://127.0.0.1:7860/gradio_api/mcp/sse`. ## Connecting to Cursor AI 7. To test the MCP server with Cursor AI, open Cursor Settings, navigate to the "MCP" tab, and click the "+ Add new global MCP server" button. 8. Add the following JSON configuration to the MCP settings file: ```json { "mcpServers": { "gradio": { "url": "http://127.0.0.1:7860/gradio_api/mcp/sse" } } } ``` 9. Save the file. You will now see an active MCP server named `gradio` with the tools `code_analysis_report` and `code_analysis_score`. To test this MCP server, you can create a new chat in agent mode of the Cursor using (CTRL +T) and ask for a code analysis report (e.g., "analyze this Python code: print('hello')"). Cursor will ask for permission to run the MCP tool. Approve it.