Spaces:
Runtime error
Runtime error
Added RAG functions.
Browse files- functions/rag.py +51 -0
- functions/tools.py +50 -1
functions/rag.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''Collection of function for RAG on article texts.'''
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import logging
|
| 5 |
+
import queue
|
| 6 |
+
from semantic_text_splitter import TextSplitter
|
| 7 |
+
from tokenizers import Tokenizer
|
| 8 |
+
from upstash_vector import Index, Vector
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def ingest(rag_ingest_queue: queue.Queue) -> None:
|
| 12 |
+
'''Semantically chunks article and upsert to Upstash vector db
|
| 13 |
+
using article title as namespace.'''
|
| 14 |
+
|
| 15 |
+
logger = logging.getLevelName(__name__ + '.ingest()')
|
| 16 |
+
|
| 17 |
+
index = Index(
|
| 18 |
+
url='https://living-whale-89944-us1-vector.upstash.io',
|
| 19 |
+
token=os.environ['UPSTASH_VECTOR_KEY']
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
while True:
|
| 23 |
+
|
| 24 |
+
namespaces = index.list_namespaces()
|
| 25 |
+
|
| 26 |
+
item = rag_ingest_queue.get()
|
| 27 |
+
title = item['title']
|
| 28 |
+
text = item['content']
|
| 29 |
+
logger.info('Got %s from RAG ingest queue', title)
|
| 30 |
+
|
| 31 |
+
if title not in namespaces:
|
| 32 |
+
|
| 33 |
+
tokenizer=Tokenizer.from_pretrained('bert-base-uncased')
|
| 34 |
+
splitter=TextSplitter.from_huggingface_tokenizer(tokenizer, 256)
|
| 35 |
+
chunks=splitter.chunks(text)
|
| 36 |
+
|
| 37 |
+
for i, chunk in enumerate(chunks):
|
| 38 |
+
index.upsert(
|
| 39 |
+
vectors=[
|
| 40 |
+
Vector(
|
| 41 |
+
id=hash(f'{title}-{i}'),
|
| 42 |
+
data=chunk,
|
| 43 |
+
)
|
| 44 |
+
],
|
| 45 |
+
namespace=title
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
logger.info('Ingested %s chunks into vector DB', i + 1)
|
| 49 |
+
|
| 50 |
+
else:
|
| 51 |
+
logger.info('%s already in RAG namespace', title)
|
functions/tools.py
CHANGED
|
@@ -1,10 +1,25 @@
|
|
| 1 |
'''Tool functions for MCP server'''
|
| 2 |
|
|
|
|
|
|
|
| 3 |
import time
|
| 4 |
import json
|
| 5 |
import logging
|
|
|
|
|
|
|
|
|
|
| 6 |
import functions.feed_extraction as extraction_funcs
|
| 7 |
import functions.summarization as summarization_funcs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
def get_feed(website: str) -> list:
|
|
@@ -38,18 +53,52 @@ def get_feed(website: str) -> list:
|
|
| 38 |
content = extraction_funcs.parse_feed(feed_uri)
|
| 39 |
logger.info('parse_feed() returned %s entries', len(list(content.keys())))
|
| 40 |
|
| 41 |
-
# Summarize each post in the feed
|
| 42 |
for i, item in content.items():
|
| 43 |
|
| 44 |
if item['content'] is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
summary = summarization_funcs.summarize_content(
|
| 46 |
item['title'],
|
| 47 |
item['content']
|
| 48 |
)
|
|
|
|
| 49 |
content[i]['summary'] = summary
|
|
|
|
| 50 |
|
| 51 |
content[i].pop('content', None)
|
| 52 |
|
| 53 |
logger.info('Completed in %s seconds', round(time.time()-start_time, 2))
|
| 54 |
|
| 55 |
return json.dumps(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
'''Tool functions for MCP server'''
|
| 2 |
|
| 3 |
+
import os
|
| 4 |
+
import threading
|
| 5 |
import time
|
| 6 |
import json
|
| 7 |
import logging
|
| 8 |
+
import queue
|
| 9 |
+
from upstash_vector import Index, Vector
|
| 10 |
+
|
| 11 |
import functions.feed_extraction as extraction_funcs
|
| 12 |
import functions.summarization as summarization_funcs
|
| 13 |
+
import functions.rag as rag_funcs
|
| 14 |
+
|
| 15 |
+
RAG_INGEST_QUEUE = queue.Queue()
|
| 16 |
+
|
| 17 |
+
rag_ingest_thread = threading.Thread(
|
| 18 |
+
target=rag_funcs.ingest,
|
| 19 |
+
args=(RAG_INGEST_QUEUE,)
|
| 20 |
+
)
|
| 21 |
+
|
| 22 |
+
rag_ingest_thread.start()
|
| 23 |
|
| 24 |
|
| 25 |
def get_feed(website: str) -> list:
|
|
|
|
| 53 |
content = extraction_funcs.parse_feed(feed_uri)
|
| 54 |
logger.info('parse_feed() returned %s entries', len(list(content.keys())))
|
| 55 |
|
| 56 |
+
# Summarize each post in the feed and submit full text for RAG ingest
|
| 57 |
for i, item in content.items():
|
| 58 |
|
| 59 |
if item['content'] is not None:
|
| 60 |
+
|
| 61 |
+
RAG_INGEST_QUEUE.put(item)
|
| 62 |
+
logger.info('%s sent to RAG ingest', item['title'])
|
| 63 |
+
|
| 64 |
summary = summarization_funcs.summarize_content(
|
| 65 |
item['title'],
|
| 66 |
item['content']
|
| 67 |
)
|
| 68 |
+
|
| 69 |
content[i]['summary'] = summary
|
| 70 |
+
logger.info('Summary of %s generated', item['title'])
|
| 71 |
|
| 72 |
content[i].pop('content', None)
|
| 73 |
|
| 74 |
logger.info('Completed in %s seconds', round(time.time()-start_time, 2))
|
| 75 |
|
| 76 |
return json.dumps(content)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def context_search(query: str, article_title: str = None) -> str:
|
| 80 |
+
'''Searches for context relevant to query in article vector store.
|
| 81 |
+
|
| 82 |
+
Ags:
|
| 83 |
+
query: user query to find context for
|
| 84 |
+
article_title: optional, use this argument to search only for context
|
| 85 |
+
from a specific context
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
Context which bests matches query as string.
|
| 89 |
+
'''
|
| 90 |
+
|
| 91 |
+
index = Index(
|
| 92 |
+
url='https://living-whale-89944-us1-vector.upstash.io',
|
| 93 |
+
token=os.environ['UPSTASH_VECTOR_KEY']
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
results = None
|
| 97 |
+
|
| 98 |
+
results = index.query(
|
| 99 |
+
[query],
|
| 100 |
+
top_k=3,
|
| 101 |
+
namespace=article_title
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
return results
|