Spaces:
Sleeping
Sleeping
File size: 51,165 Bytes
31891f6 0b3fd85 31891f6 0b3fd85 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 01d22e3 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 024be50 31891f6 0b3fd85 31891f6 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 024be50 0b3fd85 31891f6 0b3fd85 024be50 0b3fd85 024be50 31891f6 024be50 31891f6 024be50 0b3fd85 024be50 0b3fd85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 |
import os
import threading
import time
import json
import requests
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from flask import Flask, request, jsonify
from flask_cors import CORS
import gradio as gr
from typing import List, Dict, Any, Optional
import html
import re
from dotenv import load_dotenv # Import load_dotenv
from pyngrok import ngrok
# --- Ngrok usage example (if needed) ---
NGROK_AUTH_TOKEN = os.getenv("Ngrok")
if NGROK_AUTH_TOKEN:
try:
ngrok.set_auth_token(NGROK_AUTH_TOKEN)
# Example: ngrok.connect(7860)
except ImportError:
print("pyngrok not installed; skipping ngrok setup.")
# --- MovieRecommendationSystem Class (from Cell C) ---
class MovieRecommendationSystem:
def __init__(self):
self.movies_df = None
self.similarity_matrix = None
self.vectorizer = CountVectorizer(stop_words='english')
# Load API key from environment variable
self.API_KEY = os.getenv("OMDB_API_KEY")
if not self.API_KEY:
print("π¨ WARNING: OMDB_API_KEY not found in environment variables.")
self.BASE_URL = "http://www.omdbapi.com/"
self.HEADERS = {}
def fetch_movie_by_title(self, title):
"""Fetch a single movie by title from OMDb API."""
if not self.API_KEY:
print("OMDb API key is not set. Cannot fetch movie.")
return None
params = {
"apikey": self.API_KEY,
"t": title,
"plot": "full"
}
try:
response = requests.get(self.BASE_URL, headers=self.HEADERS, params=params, timeout=10) # Added timeout
if response.status_code == 200:
data = response.json()
if data.get("Response") == "True":
return data
print(f"Error fetching movie '{title}': {response.status_code} or movie not found")
return None
except requests.exceptions.Timeout:
print(f"Timeout fetching movie '{title}'.")
return None
except Exception as e:
print(f"Error fetching movie '{title}': {e}")
return None
def fetch_movies(self, titles=None, limit=400):
"""Fetch a list of movies, either from provided titles or a default list."""
if titles is None:
titles = [
"Inception", "The Dark Knight", "Interstellar", "The Matrix", "Fight Club",
"Pulp Fiction", "Forrest Gump", "The Shawshank Redemption", "Gladiator", "Titanic",
"Avatar", "The Avengers", "Jurassic Park", "Star Wars", "The Lord of the Rings",
"Harry Potter", "Pirates of the Caribbean", "The Godfather", "Back to the Future",
"Indiana Jones", "The Lion King", "Toy Story", "Finding Nemo", "Up", "WALL-E",
"The Incredibles", "Coco", "Spider-Man", "Iron Man", "Captain America",
"Thor", "Black Panther", "Deadpool", "Logan", "X-Men", "Batman Begins",
"The Dark Knight Rises", "Man of Steel", "Wonder Woman", "Aquaman", "Parasite",
"Joker", "Once Upon a Time in Hollywood", "Avengers: Endgame", "Toy Story 4",
"Spider-Man: Into the Spider-Verse", "Green Book", "Bohemian Rhapsody",
"A Star Is Born", "The Irishman", "1917", "Ford v Ferrari", "Little Women",
"Marriage Story", "Knives Out", "Us", "Midsommar", "Parasite", "Joker",
"Once Upon a Time in Hollywood", "Avengers: Endgame", "Toy Story 4",
"Spider-Man: Into the Spider-Verse", "Green Book", "Bohemian Rhapsody",
"A Star Is Born", "The Irishman", "1917", "Ford v Ferrari", "Little Women",
"Marriage Story", "Knives Out", "Us", "Midsommar", "Get Out", "Dunkirk",
"La La Land", "Moonlight", "Arrival", "Hacksaw Ridge", "Hell or High Water",
"Manchester by the Sea", "Hidden Figures", "Lion", "Fences", "Deadpool",
"Logan", "Arrival", "Hell or High Water", "Manchester by the Sea", "Hidden Figures",
"Lion", "Fences", "Zootopia", "Moana", "Sing Street", "The Nice Guys",
"Captain America: Civil War", "Doctor Strange", "Fantastic Beasts and Where to Find Them",
"Rogue One: A Star Wars Story", "Arrival", "Hacksaw Ridge", "Hell or High Water",
"Manchester by the Sea", "Hidden Figures", "Lion", "Fences", "Zootopia",
"Moana", "Sing Street", "The Nice Guys", "Captain America: Civil War", "Doctor Strange",
"Fantastic Beasts and Where to Find Them", "Rogue One: A Star Wars Story", "Deadpool",
"Logan", "Arrival", "Hell or High Water", "Manchester by the Sea", "Hidden Figures",
"Lion", "Fences", "Zootopia", "Moana", "Sing Street", "The Nice Guys",
"Captain America: Civil War", "Doctor Strange", "Fantastic Beasts and Where to Find Them",
"Rogue One: A Star Wars Story", "The Martian", "Mad Max: Fury Road", "Inside Out",
"Spotlight", "The Revenant", "Room", "Brooklyn", "Carol", "Sicario",
"Straight Outta Compton", "The Big Short", "Bridge of Spies", "Ex Machina",
"The Hateful Eight", "Anomalisa", "Son of Saul", "The Lobster", "Amy",
"Cartel Land", "Winter on Fire: Ukraine's Fight for Freedom", "What Happened, Miss Simone?",
"Listen to Me Marlon", "The Look of Silence", "Shaun the Sheep Movie", "When Marnie Was There",
"Boy and the World", "Mustang", "Embrace of the Serpent", "Theeb", "A War",
"A Bigger Splash", "Florence Foster Jenkins", "Hail, Caesar!", "Julieta",
"Love & Friendship", "Maggie's Plan", "Miles Ahead", "Our Little Sister",
"The Lobster", "Amy", "Cartel Land", "Winter on Fire: Ukraine's Fight for Freedom",
"What Happened, Miss Simone?", "Listen to Me Marlon", "The Look of Silence",
"Shaun the Sheep Movie", "When Marnie Was There", "Boy and the World",
"Mustang", "Embrace of the Serpent", "Theeb", "A War", "A Bigger Splash",
"Florence Foster Jenkins", "Hail, Caesar!", "Julieta", "Love & Friendship",
"Maggie's Plan", "Miles Ahead", "Our Little Sister", "Paterson", "Sing Street",
"The Nice Guys", "Captain America: Civil War", "Doctor Strange",
"Fantastic Beasts and Where to Find Them", "Rogue One: A Star Wars Story",
"The Martian", "Mad Max: Fury Road", "Inside Out", "Spotlight", "The Revenant",
"Room", "Brooklyn", "Carol", "Sicario", "Straight Outta Compton",
"The Big Short", "Bridge of Spies", "Ex Machina", "The Hateful Eight",
"Anomalisa", "Son of Saul", "The Lobster", "Amy", "Cartel Land",
"Winter on Fire: Ukraine's Fight for Freedom", "What Happened, Miss Simone?",
"Listen to Me Marlon", "The Look of Silence", "Shaun the Sheep Movie",
"When Marnie Was There", "Boy and the World", "Mustang", "Embrace of the Serpent",
"Theeb", "A War", "A Bigger Splash", "Florence Foster Jenkins",
"Hail, Caesar!", "Julieta", "Love & Friendship", "Maggie's Plan",
"Miles Ahead", "Our Little Sister", "Paterson", "Sing Street", "The Nice Guys",
"Captain America: Civil War", "Doctor Strange",
"Fantastic Beasts and Where to Find Them", "Rogue One: A Star Wars Story",
"The Martian", "Mad Max: Fury Road", "Inside Out", "Spotlight", "The Revenant",
"Room", "Brooklyn", "Carol", "Sicario", "Straight Outta Compton",
"The Big Short", "Bridge of Spies", "Ex Machina", "The Hateful Eight",
"Anomalisa", "Son of Saul", "The Lobster", "Amy", "Cartel Land",
"Winter on Fire: Ukraine's Fight for Freedom", "What Happened, Miss Simone?",
"Listen to Me Marlon", "The Look of Silence", "Shaun the Sheep Movie",
"When Marnie Was There", "Boy and the World", "Mustang", "Embrace of the Serpent",
"Theeb", "A War", "A Bigger Splash", "Florence Foster Jenkins",
"Hail, Caesar!", "Julieta", "Love & Friendship", "Maggie's Plan",
"Miles Ahead", "Our Little Sister", "Paterson"
][:limit]
movies = []
titles_to_fetch = titles[:limit] if limit is not None else titles
for title in titles_to_fetch:
movie_data = self.fetch_movie_by_title(title)
if movie_data:
movies.append(movie_data)
return movies
def prepare_movie_data(self):
"""Prepare movie data from OMDb API or fallback if API fetch fails."""
movies = self.fetch_movies()
if not movies:
print("π¨ API returned no movies. Loading fallback dataset.")
fallback_movies = [
{'id': 'tt0372784', 'title': 'Batman Begins', 'overview': 'A young Bruce Wayne becomes Batman to fight crime in Gotham.', 'genres': 'Action, Adventure, Crime', 'cast': 'Christian Bale, Michael Caine', 'poster_path': 'https://m.media-amazon.com/images/M/MV5BMjE3NDcyNDExNF5BMl5BanBnXkFtZTcwMDYwNDk0OA@@._V1_SX300.jpg', 'vote_average': 8.2, 'release_date': '2005', 'combined_features': 'Action Adventure Crime Christian Bale Michael Caine A young Bruce Wayne becomes Batman to fight crime in Gotham.'},
{'id': 'tt0468569', 'title': 'The Dark Knight', 'overview': 'Batman faces the Joker, a criminal mastermind.', 'genres': 'Action, Crime, Drama, Thriller', 'cast': 'Christian Bale, Heath Ledger', 'poster_path': 'https://m.media-amazon.com/images/M/MV5BMTMxNTMwODM0NF5BMl5BanBnXkFtZTcwODAyMTk2Mw@@._V1_SX300.jpg', 'vote_average': 9.0, 'release_date': '2008', 'combined_features': 'Action Crime Drama Thriller Christian Bale Heath Ledger Batman faces the Joker, a criminal mastermind.'},
{'id': 'tt1345836', 'title': 'The Dark Knight Rises', 'overview': 'Batman returns to save Gotham from Bane.', 'genres': 'Action, Crime, Thriller', 'cast': 'Christian Bale, Tom Hardy', 'poster_path': 'https://m.media-amazon.com/images/M/MV5BMTk4ODQzNDY3Ml5BMl5BanBnXkFtZTcwODA0NTM4Nw@@._V1_SX300.jpg', 'vote_average': 8.4, 'release_date': '2012', 'combined_features': 'Action Crime Thriller Christian Bale Tom Hardy Batman returns to save Gotham from Bane.'},
{'id': 'tt0144084', 'title': 'American Psycho', 'overview': 'A Wall Street banker leads a double life as a serial killer.', 'genres': 'Crime, Drama, Horror', 'cast': 'Christian Bale, Willem Dafoe', 'poster_path': 'https://m.media-amazon.com/images/M/MV5BZTM2ZGJmNzktNzc3My00ZWMzLTg0MjItZjBlMWJiNDE0NjZiXkEyXkFqcGc@._V1_SX300.jpg', 'vote_average': 7.6, 'release_date': '2000', 'combined_features': 'Crime Drama Horror Christian Bale Willem Dafoe A Wall Street banker leads a double life as a serial killer.'},
{'id': 'tt0246578', 'title': 'Donnie Darko', 'overview': 'A troubled teenager is plagued by visions of a man in a rabbit costume.', 'genres': 'Drama, Sci-Fi, Thriller', 'cast': 'Jake Gyllenhaal, Maggie Gyllenhaal', 'poster_path': 'https://m.media-amazon.com/images/M/MV5BZjZlZDlkYTktMmU1My00ZDBiLWE0TAQtNjkzZDFiYTY0ZmMyXkEyXkFqcGc@._V1_SX300.jpg', 'vote_average': 8.0, 'release_date': '2001', 'combined_features': 'Drama Sci-Fi Thriller Jake Gyllenhaal Maggie Gyllenhaal A troubled teenager is plagued by visions of a man in a rabbit costume.'}
]
self.movies_df = pd.DataFrame(fallback_movies)
else:
print(f"β
Successfully fetched {len(movies)} movies from OMDb API.")
movie_data = []
for movie in movies:
movie_info = {
'id': movie.get('imdbID', movie.get('Title', 'unknown')),
'title': movie.get('Title', ''),
'overview': movie.get('Plot', ''),
'genres': movie.get('Genre', ''),
'cast': movie.get('Actors', ''),
'poster_path': movie.get('Poster', ''),
'vote_average': float(movie.get('imdbRating', '0')) if movie.get('imdbRating') not in ['N/A', None] else 0,
'release_date': movie.get('Year', ''),
'combined_features': f"{movie.get('Genre', '')} {movie.get('Actors', '')} {movie.get('Plot', '')}"
}
movie_data.append(movie_info)
self.movies_df = pd.DataFrame(movie_data)
self.build_similarity_matrix()
return self.movies_df
def build_similarity_matrix(self):
"""Build similarity matrix for recommendations based on combined features."""
if self.movies_df is not None and not self.movies_df.empty:
max_features = 5000
self.vectorizer = CountVectorizer(stop_words='english', max_features=max_features)
corpus = self.movies_df['combined_features'].fillna('').tolist()
vectorized_features = self.vectorizer.fit_transform(corpus)
self.similarity_matrix = cosine_similarity(vectorized_features)
print(f"β
Similarity matrix built with shape: {self.similarity_matrix.shape}")
else:
print("π¨ Cannot build similarity matrix: movies_df is empty.")
def get_recommendations(self, selected_movie_ids, num_recommendations=5):
"""Get movie recommendations based on selected movie IDs."""
if self.similarity_matrix is None or self.movies_df.empty:
print("Debug: Similarity matrix or movies_df is empty.")
return []
selected_indices = self.movies_df[self.movies_df['id'].isin(selected_movie_ids)].index.tolist()
if not selected_indices:
print("Debug: No selected movies found in DataFrame for recommendations.")
return []
avg_similarity_scores = np.mean(self.similarity_matrix[selected_indices], axis=0)
movie_indices = np.argsort(avg_similarity_scores)[::-1]
recommendations = []
for idx in movie_indices:
movie = self.movies_df.iloc[idx]
# Ensure the recommended movie is not one of the selected movies
if movie['id'] not in selected_movie_ids:
recommendations.append(movie.to_dict())
if len(recommendations) >= num_recommendations:
break
return recommendations
# Initialize the recommender globally
recommender = MovieRecommendationSystem()
# --- Flask Application (from Cell D, modified) ---
app = Flask(__name__)
CORS(app) # Enable CORS
@app.route('/')
def index():
"""Health check endpoint"""
return jsonify({
"message": "Netflix Clone API is running!",
"status": "success",
"endpoints": ["/api/movies", "/api/recommend"]
})
@app.route('/api/movies')
def get_movies():
"""Get all movies for display"""
try:
if recommender.movies_df is None or recommender.movies_df.empty:
print("Preparing movie data...")
recommender.prepare_movie_data()
print(f"Loaded {len(recommender.movies_df)} movies")
movies = recommender.movies_df.to_dict('records')
return jsonify(movies)
except Exception as e:
print(f"Error in get_movies: {e}")
return jsonify({'error': 'Failed to fetch movies'}), 500
@app.route('/api/recommend', methods=['POST'])
def recommend_movies():
"""Get recommendations based on selected movies"""
try:
data = request.json
selected_movie_ids = data.get('selected_movies', [])
if len(selected_movie_ids) < 5:
return jsonify({'error': 'Please select at least 5 movies'}), 400
print(f"Getting recommendations for movies: {selected_movie_ids}")
recommendations = recommender.get_recommendations(selected_movie_ids)
return jsonify(recommendations)
except Exception as e:
print(f"Error in recommend_movies: {e}")
return jsonify({'error': 'Failed to get recommendations'}), 500
@app.route('/api/health')
def health_check():
"""Health check endpoint"""
return jsonify({
"status": "healthy",
"movies_loaded": len(recommender.movies_df) if recommender.movies_df is not None else 0,
"similarity_matrix_built": recommender.similarity_matrix is not None
})
# Function to start Flask server (from Cell E, modified)
def start_flask_server():
"""Start Flask server in background"""
try:
print("π Starting Flask backend server...")
# Run Flask app on port 5000, accessible locally within the Space
app.run(host='127.0.0.1', port=5000, debug=False)
except Exception as e:
print(f"β Error starting Flask server: {e}")
# --- Gradio Application (from Cell 7P4A_qIhjvbT, modified) ---
# API_BASE_URL now points to the Flask app running locally within the Space
API_BASE_URL = "http://127.0.0.1:5000"
MAX_SELECTIONS = 10
MIN_RECOMMENDATIONS = 5
class CinemaCloneApp:
def __init__(self):
self.selected_movies = []
self.all_movies = []
self.recommendations = []
def sanitize_input(self, text: str) -> str:
"""Sanitize user input to prevent XSS attacks"""
if not isinstance(text, str):
return ""
text = re.sub(r'<[^>]*>', '', text)
text = html.escape(text)
return text.strip()
def validate_movie_data(self, movie: Dict[str, Any]) -> bool:
"""Validate movie data structure"""
required_fields = ['id', 'title']
return all(field in movie and movie[field] for field in required_fields)
def fetch_movies_from_backend(self) -> List[Dict[str, Any]]:
"""Fetch movies from the Flask backend with comprehensive error handling"""
try:
response = requests.get(
f"{API_BASE_URL}/api/movies",
timeout=60, # Increased timeout
headers={'Accept': 'application/json'}
)
if response.status_code == 200:
content_type = response.headers.get('content-type', '')
if 'application/json' not in content_type:
# Attempt to read text response for debugging non-JSON errors
print(f"Warning: Received non-JSON response (status {response.status_code}). Content: {response.text[:500]}...") # Print first 500 chars
raise ValueError(f"Backend returned non-JSON response (Status: {response.status_code})")
movies = response.json()
if isinstance(movies, list) and len(movies) > 0:
validated_movies = []
for movie in movies:
if self.validate_movie_data(movie):
movie['title'] = self.sanitize_input(movie.get('title', ''))
movie['overview'] = self.sanitize_input(movie.get('overview', ''))
movie['genres'] = self.sanitize_input(movie.get('genres', ''))
movie['cast'] = self.sanitize_input(movie.get('cast', '')) # Sanitize cast as well
validated_movies.append(movie)
self.all_movies = validated_movies
print(f"Successfully fetched and validated {len(validated_movies)} movies from backend.")
return validated_movies
elif isinstance(movies, list) and len(movies) == 0:
print("Backend returned an empty movie list.")
return self.get_fallback_movies()
else:
print(f"Backend returned unexpected data format: {movies}")
raise ValueError("Invalid movie data structure from backend")
else:
try:
error_response = response.json()
print(f"Backend error response (Status {response.status_code}): {error_response}")
except json.JSONDecodeError:
print(f"Backend non-JSON error response (Status {response.status_code}) from recommendations endpoint: {response.text[:500]}...")
raise requests.RequestException(f"Backend request failed with status: {response.status_code}")
except requests.exceptions.Timeout:
print(f"Timeout fetching movies from backend at {API_BASE_URL}/api/movies")
return self.get_fallback_movies()
except requests.exceptions.ConnectionError as ce:
print(f"Connection error fetching movies from backend at {API_BASE_URL}/api/movies: {ce}")
print("Ensure the Flask backend is running and accessible at http://127.0.0.1:5000.")
return self.get_fallback_movies()
except Exception as e:
print(f"An unexpected error occurred fetching movies from backend: {e}")
return self.get_fallback_movies()
def get_recommendations_from_backend(self, selected_ids: List[str]) -> List[Dict[str, Any]]:
"""Get recommendations from Flask backend with security validation"""
try:
if not selected_ids or not isinstance(selected_ids, list):
raise ValueError("Invalid selected movie IDs")
sanitized_ids = [self.sanitize_input(str(id_)) for id_ in selected_ids if id_]
response = requests.post(
f"{API_BASE_URL}/api/recommend",
json={"selected_movies": sanitized_ids},
headers={'Content-Type': 'application/json', 'Accept': 'application/json'},
timeout=30
)
if response.status_code == 200:
content_type = response.headers.get('content-type', '')
if 'application/json' not in content_type:
print(f"Warning: Received non-JSON response (status {response.status_code}) from recommendations endpoint. Content: {response.text[:500]}...")
raise ValueError(f"Backend returned non-JSON response (Status: {response.status_code}) from recommendations endpoint")
recommendations = response.json()
if isinstance(recommendations, list):
validated_recs = []
for rec in recommendations:
if self.validate_movie_data(rec):
rec['title'] = self.sanitize_input(rec.get('title', ''))
rec['overview'] = self.sanitize_input(rec.get('overview', ''))
rec['genres'] = self.sanitize_input(rec.get('genres', ''))
rec['cast'] = self.sanitize_input(rec.get('cast', '')) # Sanitize cast as well
validated_recs.append(rec)
print(f"Successfully received and validated {len(validated_recs)} recommendations.")
return validated_recs
else:
print(f"Backend returned unexpected data format for recommendations: {recommendations}")
raise ValueError("Invalid recommendations data structure from backend")
else:
try:
error_response = response.json()
print(f"Backend error response (Status {response.status_code}) from recommendations endpoint: {error_response}")
except json.JSONDecodeError:
print(f"Backend non-JSON error response (Status {response.status_code}) from recommendations endpoint: {response.text[:500]}...")
raise requests.RequestException(f"Backend recommendation request failed with status: {response.status_code}")
except requests.exceptions.Timeout:
print(f"Timeout getting recommendations from backend at {API_BASE_URL}/api/recommend")
return []
except requests.exceptions.ConnectionError as ce:
print(f"Connection error getting recommendations from backend at {API_BASE_URL}/api/recommend: {ce}")
print("Ensure the Flask backend is running and accessible at http://127.0.0.1:5000.")
return []
except Exception as e:
print(f"An unexpected error occurred getting recommendations: {e}")
return []
def create_movie_card_html(self, movie: Dict[str, Any], is_selected: bool = False, is_recommendation: bool = False) -> str:
"""Create HTML for a movie card with React-inspired styling and animations"""
# Ensure all fields are present with default empty strings to avoid KeyError
title = html.escape(movie.get('title', 'Unknown'))
overview = html.escape(movie.get('overview', '')[:200] + "..." if len(movie.get('overview', '')) > 200 else movie.get('overview', ''))
genres = html.escape(movie.get('genres', ''))
cast = html.escape(movie.get('cast', '')[:150] + "..." if len(movie.get('cast', '')) > 150 else movie.get('cast', ''))
rating = float(movie.get('vote_average', 0))
year = html.escape(str(movie.get('release_date', '')))
movie_id = html.escape(str(movie.get('id', ''))) # Ensure ID is also sanitized and present
poster_url = movie.get('poster_path', '')
if not poster_url or not poster_url.startswith(('http://', 'https://')):
poster_url = 'https://via.placeholder.com/300x450/1a1a1a/fff?text=No+Image'
selected_class = "selected" if is_selected else ""
rec_class = "recommendation" if is_recommendation else ""
selection_indicator = "β" if is_selected else "+"
genre_list = genres.split(', ') if genres else []
genre_tags_html = ""
for genre in genre_list[:3]:
genre_tags_html += f'<span class="genre-tag">{html.escape(genre.strip())}</span>' # Sanitize genre tags
# Use data-movie-id for JavaScript interaction
return f"""
<div class="movie-card {selected_class} {rec_class}" data-movie-id="{movie_id}" onclick="selectMovieByTitle('{title}')">
<div class="movie-poster-container">
<img src="{html.escape(poster_url)}"
alt="{title}"
class="movie-poster"
onerror="this.src='https://via.placeholder.com/300x450/1a1a1a/fff?text=No+Image'">
<div class="movie-overlay">
<div class="action-buttons">
<!-- Add your action buttons here if needed -->
</div>
</div>
<div class="selection-indicator">{selection_indicator}</div>
</div>
<div class="movie-info">
<h3 class="movie-title">{title}</h3>
<div class="movie-meta">
<div class="movie-rating">
<span class="star">β</span>
<span class="rating-value">{rating:.1f}</span>
</div>
<div class="movie-year">{year}</div>
</div>
<div class="genre-tags">
{genre_tags_html}
</div>
<div class="movie-cast">
<strong>Cast:</strong> {cast}
</div>
<div class="movie-overview">{overview}</div>
</div>
</div>
"""
def create_movies_grid_html(self, movies: List[Dict[str, Any]], is_recommendation: bool = False) -> str:
"""Create HTML grid of movie cards with React-inspired layout"""
if not movies:
return f"""
<div class="no-movies">
<div class="no-movies-icon">π¬</div>
<h3>No {'recommendations' if is_recommendation else 'movies'} available</h3>
<p>{'Select more movies to get better recommendations' if is_recommendation else 'Click Load Movies to start exploring'}</p>
</div>
"""
cards_html = ""
for movie in movies[:500]: # Limit for performance, can be adjusted
# Find the full movie object from self.all_movies to check selection status
full_movie_data = next((item for item in self.all_movies if item.get('id') == movie.get('id')), None)
is_selected = full_movie_data and full_movie_data.get('id') in self.selected_movies
cards_html += self.create_movie_card_html(movie, is_selected, is_recommendation)
grid_class = "recommendations-grid" if is_recommendation else "movies-grid"
return f"""
<div class="{grid_class}">
{cards_html}
</div>
"""
# Initialize the app instance globally
gradio_app_instance = CinemaCloneApp()
# Enhanced CSS with React-inspired styling and animations
cinema_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Inter:wght@300;400;500;600;700;800;900&display=swap');
* {
box-sizing: border-box;
}
.gradio-container {
background: linear-gradient(135deg, #0a0a0a 0%, #1a1a1a 50%, #0f0f0f 100%);
color: white;
font-family: 'Inter', -apple-system, BlinkMacSystemFont, 'Segoe UI', sans-serif;
min-height: 100vh;
}
.cinema-header {
text-align: center;
padding: 40px 20px;
background: linear-gradient(135deg, #e50914 0%, #ff6b6b 50%, #8b5cf6 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
font-size: clamp(2.5rem, 5vw, 4rem);
font-weight: 900;
letter-spacing: -3px;
margin-bottom: 20px;
text-shadow: 0 0 30px rgba(229, 9, 20, 0.3);
}
.subtitle {
font-size: 1.2rem;
opacity: 0.8;
margin-bottom: 40px;
font-weight: 400;
}
.selection-counter {
background: linear-gradient(135deg, #e50914 0%, #ff6b6b 100%);
padding: 20px 30px;
border-radius: 50px;
text-align: center;
font-weight: 700;
margin: 30px auto;
max-width: 400px;
box-shadow: 0 15px 35px rgba(229, 9, 20, 0.4);
backdrop-filter: blur(20px);
border: 1px solid rgba(255, 255, 255, 0.1);
font-size: 1.1rem;
}
.movies-grid, .recommendations-grid {
display: grid;
grid-template-columns: repeat(auto-fill, minmax(320px, 1fr));
gap: 30px;
padding: 30px;
max-height: 800px;
overflow-y: auto;
scrollbar-width: thin;
scrollbar-color: #e50914 #1a1a1a;
}
.movies-grid::-webkit-scrollbar, .recommendations-grid::-webkit-scrollbar {
width: 8px;
}
.movies-grid::-webkit-scrollbar-track, .recommendations-grid::-webkit-scrollbar-track {
background: #1a1a1a;
border-radius: 4px;
}
.movies-grid::-webkit-scrollbar-thumb, .recommendations-grid::-webkit-scrollbar-thumb {
background: linear-gradient(135deg, #e50914, #ff6b6b);
border-radius: 4px;
}
.movie-card {
position: relative;
border-radius: 20px;
overflow: hidden;
background: linear-gradient(145deg, #1e1e1e, #2a2a2a);
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.5);
transition: all 0.4s cubic-bezier(0.4, 0, 0.2, 1);
cursor: pointer;
border: 2px solid transparent;
backdrop-filter: blur(10px);
}
.movie-card:hover {
transform: scale(1.05) translateY(-15px);
box-shadow: 0 25px 50px rgba(229, 9, 20, 0.4);
border-color: rgba(229, 9, 20, 0.5);
}
.movie-card.selected {
border-color: #e50914;
box-shadow: 0 0 30px rgba(229, 9, 20, 0.6);
transform: scale(1.02);
}
.movie-card.recommendation {
background: linear-gradient(145deg, #2a1a2a, #3a2a3a);
border-color: rgba(139, 92, 246, 0.5);
}
.movie-card.recommendation:hover {
box-shadow: 0 25px 50px rgba(139, 92, 246, 0.4);
border-color: #8b5cf6;
}
.movie-poster-container {
position: relative;
width: 100%;
height: 400px;
overflow: hidden;
}
.movie-poster {
width: 100%;
height: 100%;
object-fit: cover;
transition: transform 0.4s ease;
}
.movie-card:hover .movie-poster {
transform: scale(1.1);
}
.movie-overlay {
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background: linear-gradient(
to bottom,
transparent 0%,
transparent 40%,
rgba(0, 0, 0, 0.7) 70%,
rgba(0, 0, 0, 0.9) 100%
);
display: flex;
align-items: flex-end;
justify-content: center;
padding: 20px;
opacity: 0;
transition: opacity 0.3s ease;
}
.movie-card:hover .movie-overlay {
opacity: 1;
}
.action-buttons {
display: flex;
gap: 12px;
transform: translateY(20px);
transition: transform 0.3s ease;
}
.movie-card:hover .action-buttons {
transform: translateY(0);
}
.action-btn {
width: 45px;
height: 45px;
border-radius: 50%;
border: 2px solid rgba(255, 255, 255, 0.3);
background: rgba(255, 255, 255, 0.1);
color: white;
display: flex;
align-items: center;
justify-content: center;
cursor: pointer;
transition: all 0.3s ease;
backdrop-filter: blur(10px);
}
.action-btn.primary {
background: linear-gradient(135deg, #e50914, #ff6b6b);
border-color: #e50914;
}
.action-btn:hover {
transform: scale(1.1);
background: rgba(255, 255, 255, 0.2);
}
.action-btn.primary:hover {
background: linear-gradient(135deg, #ff1a25, #ff7b7b);
}
.selection-indicator {
position: absolute;
top: 15px;
right: 15px;
width: 35px;
height: 35px;
border-radius: 50%;
background: rgba(229, 9, 20, 0.9);
display: flex;
align-items: center;
justify-content: center;
color: white;
font-weight: bold;
font-size: 18px;
backdrop-filter: blur(10px);
border: 2px solid rgba(255, 255, 255, 0.2);
transition: all 0.3s ease;
}
.movie-card.selected .selection-indicator {
background: linear-gradient(135deg, #e50914, #ff6b6b);
transform: scale(1.1);
}
.movie-info {
padding: 25px;
background: linear-gradient(135deg, #1a1a1a, #2a2a2a);
}
.movie-title {
font-size: 1.3rem;
font-weight: 700;
margin-bottom: 12px;
color: white;
line-height: 1.3;
display: -webkit-box;
-webkit-line-clamp: 2;
-webkit-box-orient: vertical;
overflow: hidden;
}
.movie-meta {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 15px;
}
.movie-rating {
display: flex;
align-items: center;
gap: 8px;
font-weight: 600;
}
.star {
font-size: 1.2rem;
}
.rating-value {
color: #ffd700;
font-size: 1rem;
}
.movie-year {
color: #999;
font-size: 0.9rem;
font-weight: 500;
background: rgba(255, 255, 255, 0.1);
padding: 4px 12px;
border-radius: 20px;
}
.genre-tags {
display: flex;
gap: 8px;
flex-wrap: wrap;
margin-bottom: 15px;
}
.genre-tag {
background: linear-gradient(135deg, #e50914, #ff6b6b);
padding: 4px 12px;
border-radius: 20px;
font-size: 0.75rem;
font-weight: 600;
color: white;
border: 1px solid rgba(255, 255, 255, 0.1);
}
.movie-card.recommendation .genre-tag {
background: linear-gradient(135deg, #8b5cf6, #a78bfa);
}
.movie-cast {
color: #ccc;
font-size: 0.85rem;
margin-bottom: 12px;
line-height: 1.4;
}
.movie-cast strong {
color: #e50914;
font-weight: 600;
}
.movie-overview {
color: #ddd;
font-size: 0.8rem;
line-height: 1.5;
display: -webkit-box;
-webkit-line-clamp: 4;
-webkit-box-orient: vertical;
overflow: hidden;
}
.no-movies {
text-align: center;
color: #ccc;
padding: 80px 40px;
background: rgba(255, 255, 255, 0.02);
border-radius: 20px;
margin: 40px;
border: 2px dashed rgba(255, 255, 255, 0.1);
}
.no-movies-icon {
font-size: 4rem;
margin-bottom: 20px;
opacity: 0.5;
}
.no-movies h3 {
font-size: 1.5rem;
margin-bottom: 10px;
color: white;
}
.no-movies p {
font-size: 1rem;
opacity: 0.7;
}
.recommendations-section {
margin-top: 60px;
padding: 40px;
background: linear-gradient(135deg, rgba(139, 92, 246, 0.1), rgba(229, 9, 20, 0.1));
border-radius: 30px;
border: 1px solid rgba(139, 92, 246, 0.2);
backdrop-filter: blur(20px);
}
.section-title {
font-size: 2.5rem;
font-weight: 800;
margin-bottom: 30px;
background: linear-gradient(135deg, #8b5cf6, #e50914);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
text-align: center;
}
.error-message {
background: linear-gradient(135deg, rgba(229, 9, 20, 0.2), rgba(255, 107, 107, 0.1));
color: #ff6b6b;
padding: 20px;
border-radius: 15px;
text-align: center;
margin: 20px 0;
border: 1px solid rgba(229, 9, 20, 0.3);
backdrop-filter: blur(10px);
}
.success-message {
background: linear-gradient(135deg, rgba(76, 175, 80, 0.2), rgba(139, 195, 74, 0.1));
color: #4caf50;
padding: 20px;
border-radius: 15px;
text-align: center;
margin: 20px 0;
border: 1px solid rgba(76, 175, 80, 0.3);
backdrop-filter: blur(10px);
}
/* Button Styling */
.gr-button {
background: linear-gradient(135deg, #e50914, #ff6b6b) !important;
border: none !important;
color: white !important;
font-weight: 700 !important;
border-radius: 25px !important;
padding: 15px 30px !important;
transition: all 0.3s ease !important;
box-shadow: 0 10px 25px rgba(229, 9, 20, 0.3) !important;
}
.gr-button:hover {
transform: translateY(-3px) !important;
box-shadow: 0 15px 35px rgba(229, 9, 20, 0.5) !important;
background: linear-gradient(135deg, #ff1a25, #ff7b7b) !important;
}
.gr-dropdown {
background: rgba(255, 255, 255, 0.1) !important;
border: 1px solid rgba(229, 9, 20, 0.3) !important;
color: white !important;
border-radius: 15px !important;
backdrop-filter: blur(10px) !important;
}
/* Responsive Design */
@media (max-width: 768px) {
.movies-grid, .recommendations-grid {
grid-template-columns: repeat(auto-fill, minmax(280px, 1fr));
gap: 20px;
padding: 20px;
}
.cinema-header {
font-size: 2.5rem;
padding: 30px 15px;
}
.movie-card {
border-radius: 15px;
}
.movie-poster-container {
height: 350px;
}
}
/* Animation Keyframes */
@keyframes fadeInUp {
from {
opacity: 0;
transform: translateY(30px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
.movie-card {
animation: fadeInUp 0.6s ease-out;
}
.movie-card:nth-child(even) {
animation-delay: 0.1s;
}
.movie-card:nth-child(3n) {
animation-delay: 0.2s;
}
</style>
<script>
// This script is needed for the Gradio component to interact with the HTML cards
// It triggers the Gradio 'select_btn' click event with the movie title
function selectMovieByTitle(title) {
// Find the Gradio Dropdown element by its label or other identifier
// This might need adjustment based on Gradio's internal structure
const dropdown = document.querySelector('.gr-dropdown label').parentElement.querySelector('select');
if (dropdown) {
// Set the value of the dropdown to the clicked movie title
dropdown.value = title;
// Find the 'Add/Remove Selection' button
const selectButton = document.querySelector('button.gr-button').nextElementSibling; // Assuming it's the button after Load
// Find the select button more reliably
const buttons = document.querySelectorAll('button.gr-button');
let selectButtonElement = null;
for (const btn of buttons) {
if (btn.textContent.includes('Add/Remove Selection')) { // Match button text
selectButtonElement = btn;
break;
}
}
if (selectButtonElement) {
// Trigger a click event on the select button
selectButtonElement.click();
console.log('Triggered select button for:', title);
} else {
console.error("Could not find the 'Add/Remove Selection' button.");
}
} else {
console.error("Could not find the movie dropdown element.");
}
}
</script>
"""
def load_movies():
"""Load movies from backend with enhanced UI feedback"""
try:
movies = gradio_app_instance.fetch_movies_from_backend()
movies_html = gradio_app_instance.create_movies_grid_html(movies, is_recommendation=False)
status = f"<div class='success-message'>β¨ Successfully loaded {len(movies)} amazing movies!</div>"
movie_choices = ["π¬ Select a movie"] + [movie['title'] for movie in movies if movie.get('title')]
# Clear selected movies on load
gradio_app_instance.selected_movies = []
selection_counter_html = f"<div class='selection-counter'>Selected: {len(gradio_app_instance.selected_movies)}/{MAX_SELECTIONS}</div>"
return movies_html, status_display, gr.update(visible=False), gr.update(choices=movie_choices, value="π¬ Select a movie"), "", selection_counter_html
except Exception as e:
error_msg = f"<div class='error-message'>β Oops! Failed to load movies: {str(e)}</div>"
return "<div class='error-message'>Failed to load movies. Please try again.</div>", error_msg, gr.update(visible=False), gr.update(choices=["π¬ Select a movie"], value="π¬ Select a movie"), "", "<div class='selection-counter'>Selected: 0/10</div>"
def toggle_movie_selection(movie_title: str):
"""Toggle movie selection with enhanced feedback"""
movie_title = gradio_app_instance.sanitize_input(movie_title)
if not movie_title or movie_title == "π¬ Select a movie":
return gr.update(), "<div class='error-message'>Please select a movie first! π¬</div>", gr.update(visible=False), f"<div class='selection-counter'>Selected: {len(gradio_app_instance.selected_movies)}/{MAX_SELECTIONS}</div>"
selected_movie = None
for movie in gradio_app_instance.all_movies:
if movie.get('title') == movie_title:
selected_movie = movie
break
if not selected_movie:
return gr.update(), "<div class='error-message'>β Movie not found in our collection</div>", gr.update(visible=False), f"<div class='selection-counter'>Selected: {len(gradio_app_instance.selected_movies)}/{MAX_SELECTIONS}</div>"
movie_id = selected_movie['id']
if movie_id in gradio_app_instance.selected_movies:
gradio_app_instance.selected_movies.remove(movie_id)
action = "removed from"
emoji = "β"
else:
if len(gradio_app_instance.selected_movies) >= MAX_SELECTIONS:
return gr.update(), f"<div class='error-message'>π« Maximum {MAX_SELECTIONS} movies can be selected</div>", gr.update(visible=False), f"<div class='selection-counter'>Selected: {len(gradio_app_instance.selected_movies)}/{MAX_SELECTIONS}</div>"
gradio_app_instance.selected_movies.append(movie_id)
action = "added to"
emoji = "β"
# Re-render the movies grid to update selection indicators
movies_html = gradio_app_instance.create_movies_grid_html(gradio_app_instance.all_movies, is_recommendation=False)
status = f"<div class='success-message'>{emoji} '{movie_title}' {action} your collection</div>"
selection_counter_html = f"<div class='selection-counter'>Selected: {len(gradio_app_instance.selected_movies)}/{MAX_SELECTIONS}</div>"
show_rec_btn = len(gradio_app_instance.selected_movies) >= MIN_RECOMMENDATIONS
return movies_html, status_display, gr.update(visible=show_rec_btn), selection_counter_html
def get_recommendations():
"""Get movie recommendations with beautiful presentation"""
if len(gradio_app_instance.selected_movies) < MIN_RECOMMENDATIONS:
return gr.update(), f"<div class='error-message'>π― Please select at least {MIN_RECOMMENDATIONS} movies to get personalized recommendations</div>", gr.update(visible=False)
try:
recommendations = gradio_app_instance.get_recommendations_from_backend(gradio_app_instance.selected_movies)
if not recommendations:
return gr.update(), "<div class='error-message'>π€ No recommendations found. Try selecting different movies!</div>", gr.update(visible=False)
rec_html = f"""
<div class="recommendations-section">
<div class="section-title">π― Curated Just For You</div>
{gradio_app_instance.create_movies_grid_html(recommendations, is_recommendation=True)}
</div>
"""
status = f"<div class='success-message'>π Found {len(recommendations)} perfect recommendations based on your {len(gradio_app_instance.selected_movies)} selections!</div>"
return rec_html, status_display, gr.update(visible=True)
except Exception as e:
error_msg = f"<div class='error-message'>β Error getting recommendations: {str(e)}</div>"
return gr.update(), error_msg, gr.update(visible=False)
def clear_selections():
"""Clear all selections with confirmation"""
gradio_app_instance.selected_movies.clear()
# Re-render the movies grid to clear selection indicators
movies_html = gradio_app_instance.create_movies_grid_html(gradio_app_instance.all_movies, is_recommendation=False)
selection_counter_html = f"<div class='selection-counter'>Selected: {len(gradio_app_instance.selected_movies)}/{MAX_SELECTIONS}</div>"
return movies_html, "<div class='success-message'>π All selections cleared! Start fresh with new choices</div>", gr.update(visible=False), gr.update(visible=False), gr.update(value="π¬ Select a movie"), "", selection_counter_html
def search_movies(query: str):
"""Search movies by title and update the grid"""
query = gradio_app_instance.sanitize_input(query).lower()
if not query:
# If search query is empty, display all movies
return gradio_app_instance.create_movies_grid_html(gradio_app_instance.all_movies, is_recommendation=False)
else:
# Filter movies based on the query
filtered_movies = [
movie for movie in gradio_app_instance.all_movies
if query in movie.get('title', '').lower()
]
return gradio_app_instance.create_movies_grid_html(filtered_movies, is_recommendation=False)
# Create the stunning Gradio interface
with gr.Blocks(css=cinema_css, title="CinemaAI - Movie Recommendations", theme=gr.themes.Default()) as demo:
gr.HTML("""
<div class="cinema-header">
π¬ CINEMA AI
</div>
<div style="text-align: center; margin-bottom: 40px;">
<h2 class="subtitle">Discover Your Next Cinematic Adventure</h2>
<p style="opacity: 0.7; font-size: 1.1rem;">Select your favorite movies and let our AI curate personalized recommendations just for you</p>
</div>
""")
with gr.Row():
with gr.Column(scale=3):
load_btn = gr.Button("π¬ Load Movie Collection", variant="primary", size="lg")
with gr.Column(scale=2):
clear_btn = gr.Button("π Clear All Selections", variant="secondary")
selection_counter_display = gr.HTML("<div class='selection-counter'>Selected: 0/10</div>")
status_display = gr.HTML("<div class='selection-counter'>π Click 'Load Movie Collection' to begin your journey</div>")
with gr.Row():
movie_dropdown = gr.Dropdown(
choices=["π¬ Select a movie"],
label="π― Choose Your Favorite Movie",
value="π¬ Select a movie",
interactive=True
)
select_btn = gr.Button("β¨ Add/Remove Selection", variant="secondary")
search_bar = gr.Textbox(label="π Search for a movie by title", placeholder="e.g., Inception", interactive=True)
movies_display = gr.HTML("<div class='no-movies'><div class='no-movies-icon'>π¬</div><h3>Your Movie Collection Awaits</h3><p>Load movies to start exploring amazing cinema</p></div>")
rec_btn = gr.Button("π― Get My Personal Recommendations", variant="primary", size="lg", visible=False)
recommendations_display = gr.HTML("", visible=False)
# Event handlers
load_btn.click(
fn=load_movies,
outputs=[movies_display, status_display, recommendations_display, movie_dropdown, search_bar, selection_counter_display]
)
select_btn.click(
fn=toggle_movie_selection,
inputs=[movie_dropdown],
outputs=[movies_display, status_display, rec_btn, selection_counter_display]
)
rec_btn.click(
fn=get_recommendations,
outputs=[recommendations_display, status_display, recommendations_display]
)
clear_btn.click(
fn=clear_selections,
outputs=[movies_display, status_display, rec_btn, recommendations_display, movie_dropdown, search_bar, selection_counter_display]
)
search_bar.change(
fn=search_movies,
inputs=[search_bar],
outputs=[movies_display]
)
# --- Main execution block ---
if __name__ == "__main__":
load_dotenv() # Load environment variables from .env file
# Start Flask server in a separate thread
flask_thread = threading.Thread(target=start_flask_server)
flask_thread.daemon = True
flask_thread.start()
# Give Flask a moment to start
time.sleep(5) # Increased sleep time
# Launch Gradio interface
demo.launch()
|