{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyPWuwGA+W3PEAJibr/dPzGq", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "45eec1be3a594149903926a6bc428eea": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_9078e76353764dceb7cf93bc33a6463d", "IPY_MODEL_fe9a55d7eb6e4013ad1e781b01edd53d", "IPY_MODEL_c7bd4b1f12d549f5a6b5ebb714bf5946" ], "layout": "IPY_MODEL_60ce45c92536449682c51c670b9a05be" } }, "9078e76353764dceb7cf93bc33a6463d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_d45ad91af4f042938294340c44188773", "placeholder": "​", "style": "IPY_MODEL_734caeff9c014c27b374922b82fffdd0", "value": "Map: 100%" } }, "fe9a55d7eb6e4013ad1e781b01edd53d": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_e76209249d094aaa88af45102271bbc1", "max": 6, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_437209703da64cb78ac38c57834d1db0", "value": 6 } }, "c7bd4b1f12d549f5a6b5ebb714bf5946": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_230c23d8b2654debb2405d1fae2bd772", "placeholder": "​", "style": "IPY_MODEL_dd62e1e5d5da48e1887be89a74d50a6e", "value": " 6/6 [00:00<00:00, 223.68 examples/s]" } }, "60ce45c92536449682c51c670b9a05be": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "d45ad91af4f042938294340c44188773": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "734caeff9c014c27b374922b82fffdd0": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "e76209249d094aaa88af45102271bbc1": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "437209703da64cb78ac38c57834d1db0": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "230c23d8b2654debb2405d1fae2bd772": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "dd62e1e5d5da48e1887be89a74d50a6e": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "6ec35d98aa3d453aa35d1f3494ff06b0": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_0ebd9010697542aa9862eec60acdd03b", "IPY_MODEL_26b44a397c50412696beb5cecc3b7d05", "IPY_MODEL_2f67bd22b78e4fa193816e7db10b2410" ], "layout": "IPY_MODEL_df02dab90c58468c9350094dd517c7b7" } }, "0ebd9010697542aa9862eec60acdd03b": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_7a2532f556d0452bafd6aef90d06b66d", "placeholder": "​", "style": "IPY_MODEL_bbf4d362165f433fbd39884e143fbd41", "value": "Map: 100%" } }, "26b44a397c50412696beb5cecc3b7d05": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_81ead583e5aa461eb391bd0241bfbefb", "max": 6, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_a1e36b507583414e8e052c0bd9023f74", "value": 6 } }, "2f67bd22b78e4fa193816e7db10b2410": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_b3b00fc23c3445cfb24edb9f5cca6a15", "placeholder": "​", "style": "IPY_MODEL_3232892540c24cfab17952583950bbfb", "value": " 6/6 [00:00<00:00, 90.33 examples/s]" } }, "df02dab90c58468c9350094dd517c7b7": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "7a2532f556d0452bafd6aef90d06b66d": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "bbf4d362165f433fbd39884e143fbd41": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "81ead583e5aa461eb391bd0241bfbefb": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "a1e36b507583414e8e052c0bd9023f74": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "b3b00fc23c3445cfb24edb9f5cca6a15": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3232892540c24cfab17952583950bbfb": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "whbox1Gs7Azv", "outputId": "c5cb9815-6914-4684-c8d8-4652fabb168e" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Successfully logged in as jattman1993\n" ] } ], "source": [ "#login into Instgram using intagraapi\n", "\n", "from instagrapi import Client\n", "from google.colab import userdata\n", "\n", "\n", "# --- USER SETTINGS ---\n", "# Replace with your actual Instagram credentials or use Colab secrets\n", "# Remember to handle your credentials securely, e.g., using environment variables or Colab secrets\n", "USERNAME = \"jattman1993\"\n", "PASSWORD =userdata.get('password')\n", "\n", "# ---------------------\n", "\n", "cl = Client()\n", "\n", "try:\n", " cl.login(USERNAME, PASSWORD)\n", " print(f\"Successfully logged in as {USERNAME}\")\n", "except Exception as e:\n", " print(f\"Error during instagrapi login: {e}\")\n", " print(\"Please make sure your username and password are correct and that you can log in manually.\")\n", " print(\"If prompted for a verification code, please enter it in the output below.\")" ] }, { "cell_type": "code", "source": [ "#reels saver\n", "import time\n", "import random\n", "\n", "# --- USER SETTINGS ---\n", "COLLECTION_NAME = \"Collab Reels\"\n", "TARGET_REELS_COUNT = 100 # Process up to this many reels\n", "MIN_SAVES = 7\n", "MAX_SAVES = 15\n", "# ---------------------\n", "\n", "# Placeholder for personality_profile (replace with your actual profile data if needed)\n", "personality_profile = {} # Or define a dictionary with your personality traits\n", "\n", "saved_reels = []\n", "processed_reels = 0\n", "candidate_reels = [] # Store reels with their scores for ranking\n", "\n", "def personality_save_decision(reel, personality_profile):\n", " \"\"\"\n", " Custom logic for INTJ-T personality based on your specific traits:\n", " - High: Inquisitiveness (90), Aesthetic Appreciation (97), Autonomy (97),\n", " Creativity (83), Intellectual Efficiency (67), Innovation (87)\n", " - Low: Sociability (3-7), Affiliation (13), Social boldness (43)\n", " \"\"\"\n", " score = 0\n", "\n", " # Extract reel attributes safely\n", " tags = getattr(reel, 'tags', []) + getattr(reel, 'hashtags', [])\n", " desc = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''\n", " desc_lower = desc.lower()\n", "\n", " # HIGH INQUISITIVENESS (90) - Knowledge, learning, exploration\n", " intellectual_keywords = ['science', 'research', 'explained', 'how', 'why', 'theory',\n", " 'analysis', 'study', 'facts', 'discovery', 'experiment',\n", " 'psychology', 'philosophy', 'history', 'technology']\n", " if any(word in desc_lower for word in intellectual_keywords):\n", " score += 3\n", "\n", " # HIGH AESTHETIC APPRECIATION (97) - Visual beauty, art, design\n", " aesthetic_keywords = ['aesthetic', 'art', 'design', 'beautiful', 'visual',\n", " 'cinematography', 'photography', 'architecture', 'minimal',\n", " 'composition', 'color', 'artistic']\n", " if any(word in desc_lower for word in aesthetic_keywords):\n", " score += 3\n", "\n", " # HIGH AUTONOMY (97) - Independence, self-reliance, unconventional\n", " autonomy_keywords = ['independent', 'solo', 'self', 'individual', 'unique',\n", " 'unconventional', 'different', 'original', 'personal']\n", " if any(word in desc_lower for word in autonomy_keywords):\n", " score += 2\n", "\n", " # HIGH CREATIVITY (83) & INNOVATION (87) - Creative content, new ideas\n", " creative_keywords = ['creative', 'innovative', 'invention', 'new', 'original',\n", " 'diy', 'build', 'create', 'design', 'craft', 'make']\n", " if any(word in desc_lower for word in creative_keywords):\n", " score += 2\n", "\n", " # HIGH INTELLECTUAL EFFICIENCY (67) - Concise, efficient information\n", " length = getattr(reel, 'video_duration', 0)\n", " if 10 <= length <= 45: # Preference for medium-length, information-dense content\n", " score += 1\n", "\n", " # DEDUCT for LOW SOCIABILITY (3-7) - Avoid highly social content\n", " social_keywords = ['party', 'friends', 'group', 'social', 'together', 'crowd',\n", " 'everyone', 'people', 'community', 'team']\n", " if any(word in desc_lower for word in social_keywords):\n", " score -= 2\n", "\n", " # DEDUCT for LOW AFFILIATION (13) - Avoid relationship/emotional content\n", " emotional_keywords = ['relationship', 'love', 'heart', 'feelings', 'emotional',\n", " 'together', 'couple', 'romantic', 'cute', 'sweet']\n", " if any(word in desc_lower for word in emotional_keywords):\n", " score -= 2\n", "\n", " # BONUS for complexity and depth (matches INTJ preference)\n", " complex_keywords = ['complex', 'deep', 'detailed', 'comprehensive', 'advanced',\n", " 'expert', 'professional', 'technical', 'analysis']\n", " if any(word in desc_lower for word in complex_keywords):\n", " score += 1\n", "\n", " # BONUS for educational/tutorial content (high inquisitiveness)\n", " educational_keywords = ['tutorial', 'learn', 'guide', 'tip', 'hack', 'skill',\n", " 'knowledge', 'education', 'teach', 'lesson']\n", " if any(word in desc_lower for word in educational_keywords):\n", " score += 2\n", "\n", " return score\n", "\n", "print(\"Processing 100 reels and applying personality-based selection...\")\n", "\n", "# Fetch explore reels\n", "try:\n", " explore_reels = cl.explore_reels()\n", " print(f\"Fetched {len(explore_reels)} explore reels.\")\n", "except Exception as e:\n", " print(f\"Error fetching explore reels: {e}\")\n", " explore_reels = [] # Initialize as empty list to avoid NameError later\n", "\n", "# First pass: Score all reels\n", "for reel in explore_reels[:TARGET_REELS_COUNT]:\n", " processed_reels += 1\n", " print(f\"Analyzing Reel {processed_reels}/{TARGET_REELS_COUNT} (ID: {reel.id})...\")\n", "\n", " score = personality_save_decision(reel, personality_profile)\n", " candidate_reels.append((reel, score))\n", " print(f\"Score: {score}\")\n", "\n", "# Sort reels by score (highest first)\n", "candidate_reels.sort(key=lambda x: x[1], reverse=True)\n", "\n", "# Select top reels within the 7-15 range\n", "print(f\"\\nSelecting reels to save (minimum {MIN_SAVES}, maximum {MAX_SAVES})...\")\n", "\n", "# Ensure we get at least MIN_SAVES reels\n", "reels_to_save = min(MAX_SAVES, max(MIN_SAVES, len([r for r in candidate_reels if r[1] > 0])))\n", "\n", "# If we don't have enough positive-scoring reels, take the top-scoring ones anyway\n", "if len([r for r in candidate_reels if r[1] > 0]) < MIN_SAVES:\n", " reels_to_save = MIN_SAVES\n", "\n", "selected_reels = candidate_reels[:reels_to_save]\n", "\n", "print(f\"Selected {len(selected_reels)} reels to save based on personality match.\")\n", "\n", "# --- SAVE SELECTED REELS TO COLLECTION ---\n", "\n", "print(f\"\\nAttempting to save selected reels to the '{COLLECTION_NAME}' collection...\")\n", "\n", "try:\n", " print(f\"Looking for existing collection: '{COLLECTION_NAME}'...\")\n", " collections = cl.collections()\n", " collab_collection = next((c for c in collections if c.name == COLLECTION_NAME), None)\n", "\n", " if not collab_collection:\n", " print(f\"Collection '{COLLECTION_NAME}' not found. Please create it manually on Instagram.\")\n", " print(\"Skipping adding media to collection.\")\n", " else:\n", " print(f\"Using existing collection: {COLLECTION_NAME} (ID: {collab_collection.id})\")\n", "\n", " for i, (reel, score) in enumerate(selected_reels, 1):\n", " try:\n", " # CORRECTED: Use media_save instead of collection_add_media\n", " cl.media_save(reel.id, collab_collection.id)\n", " print(f\"Saved reel {i}/{len(selected_reels)} (ID: {reel.id}, Score: {score}) to '{COLLECTION_NAME}'.\")\n", " saved_reels.append(reel.id)\n", " time.sleep(random.uniform(1, 2)) # Human-like delay\n", " except Exception as save_error:\n", " print(f\"Could not save reel {reel.id} to collection: {save_error}\")\n", "\n", "except Exception as e:\n", " print(f\"An error occurred during collection management: {e}\")\n", "\n", "print(f\"\\nProcessing complete!\")\n", "print(f\"Total reels analyzed: {processed_reels}\")\n", "print(f\"Total reels saved to collection: {len(saved_reels)}\")\n", "print(f\"Saved reels: {saved_reels}\")" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "b6CQojfc7BfS", "outputId": "90e34588-df5b-4449-e516-49bbf08d2b77" }, "execution_count": 10, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Processing 100 reels and applying personality-based selection...\n", "Fetched 10 explore reels.\n", "Analyzing Reel 1/100 (ID: 3662134177216259058_73901491628)...\n", "Score: 0\n", "Analyzing Reel 2/100 (ID: 3649275160120309436_64703355772)...\n", "Score: 1\n", "Analyzing Reel 3/100 (ID: 3647708429135219905_74996099567)...\n", "Score: 1\n", "Analyzing Reel 4/100 (ID: 3661305151730419580_74829121084)...\n", "Score: 1\n", "Analyzing Reel 5/100 (ID: 3661562890869692956_70339477089)...\n", "Score: 4\n", "Analyzing Reel 6/100 (ID: 3596378784200721531_61221585315)...\n", "Score: 1\n", "Analyzing Reel 7/100 (ID: 3656188996830676738_71478687552)...\n", "Score: 0\n", "Analyzing Reel 8/100 (ID: 3660403760326938347_53789360284)...\n", "Score: 1\n", "Analyzing Reel 9/100 (ID: 3587235477495027432_57311022889)...\n", "Score: 6\n", "Analyzing Reel 10/100 (ID: 3662134540459833537_73901491628)...\n", "Score: 0\n", "\n", "Selecting reels to save (minimum 7, maximum 15)...\n", "Selected 7 reels to save based on personality match.\n", "\n", "Attempting to save selected reels to the 'Collab Reels' collection...\n", "Looking for existing collection: 'Collab Reels'...\n", "Using existing collection: Collab Reels (ID: 17886194994184734)\n", "Saved reel 1/7 (ID: 3587235477495027432_57311022889, Score: 6) to 'Collab Reels'.\n", "Saved reel 2/7 (ID: 3661562890869692956_70339477089, Score: 4) to 'Collab Reels'.\n", "Saved reel 3/7 (ID: 3649275160120309436_64703355772, Score: 1) to 'Collab Reels'.\n", "Saved reel 4/7 (ID: 3647708429135219905_74996099567, Score: 1) to 'Collab Reels'.\n", "Saved reel 5/7 (ID: 3661305151730419580_74829121084, Score: 1) to 'Collab Reels'.\n", "Saved reel 6/7 (ID: 3596378784200721531_61221585315, Score: 1) to 'Collab Reels'.\n", "Saved reel 7/7 (ID: 3660403760326938347_53789360284, Score: 1) to 'Collab Reels'.\n", "\n", "Processing complete!\n", "Total reels analyzed: 10\n", "Total reels saved to collection: 7\n", "Saved reels: ['3587235477495027432_57311022889', '3661562890869692956_70339477089', '3649275160120309436_64703355772', '3647708429135219905_74996099567', '3661305151730419580_74829121084', '3596378784200721531_61221585315', '3660403760326938347_53789360284']\n" ] } ] }, { "cell_type": "code", "source": [ "!pip install instagrapi transformers torch matplotlib --quiet\n" ], "metadata": { "id": "ogRpbsnQ4xW2" }, "execution_count": 12, "outputs": [] }, { "cell_type": "code", "source": [ "from instagrapi import Client\n", "from transformers import pipeline\n", "import matplotlib.pyplot as plt\n" ], "metadata": { "id": "4YO2pvti74Ok" }, "execution_count": 13, "outputs": [] }, { "cell_type": "code", "source": [ "# reel fething function ( calls 10 reels from the fyp page)\n", "try:\n", " explore_reels = cl.explore_reels()\n", " print(f\"Fetched {len(explore_reels)} explore reels.\")\n", "except Exception as e:\n", " print(f\"Error fetching explore reels for analysis: {e}\")\n", " explore_reels = []\n" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "gQDrMaHe78N6", "outputId": "0a88fd0c-f19c-4a6e-8479-3143104c5c4f" }, "execution_count": 24, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Fetched 10 explore reels.\n" ] } ] }, { "cell_type": "code", "source": [], "metadata": { "id": "_WDY8oQFWy9y" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from transformers import (\n", " pipeline,\n", " AutoTokenizer,\n", " AutoModelForSequenceClassification,\n", " Trainer,\n", " TrainingArguments,\n", " RobertaForSequenceClassification,\n", " AlbertForSequenceClassification\n", ")\n", "from datasets import Dataset, Features, Value\n", "import pandas as pd\n", "import torch\n", "import emoji\n", "import re\n", "from collections import Counter\n", "import numpy as np\n", "from sklearn.metrics import accuracy_score, f1_score\n", "\n", "# Configuration\n", "CONFIG = {\n", " \"max_length\": 128,\n", " \"batch_size\": 16,\n", " \"learning_rate\": 2e-5,\n", " \"num_train_epochs\": 3,\n", " \"few_shot_examples\": 5, # per class\n", " \"confidence_threshold\": 0.7,\n", " \"neutral_reanalysis_threshold\": 0.33\n", "}\n", "\n", "class ReelSentimentAnalyzer:\n", " def __init__(self):\n", " self.device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", " self._initialize_models()\n", "\n", " def _initialize_models(self):\n", " \"\"\"Initialize and configure all models\"\"\"\n", " # English models\n", " self.emotion_tokenizer = AutoTokenizer.from_pretrained(\"finiteautomata/bertweet-base-emotion-analysis\")\n", " self.emotion_model = AutoModelForSequenceClassification.from_pretrained(\n", " \"finiteautomata/bertweet-base-emotion-analysis\"\n", " ).to(self.device)\n", "\n", " self.sentiment_tokenizer = AutoTokenizer.from_pretrained(\"cardiffnlp/twitter-roberta-base-sentiment-latest\")\n", " self.sentiment_model = RobertaForSequenceClassification.from_pretrained(\n", " \"cardiffnlp/twitter-roberta-base-sentiment-latest\",\n", " ignore_mismatched_sizes=True\n", " ).to(self.device)\n", "\n", " # Hindi/English model (we'll fine-tune this)\n", " self.hindi_tokenizer = AutoTokenizer.from_pretrained(\"ai4bharat/indic-bert\")\n", " self.hindi_model = AlbertForSequenceClassification.from_pretrained(\n", " \"ai4bharat/indic-bert\",\n", " num_labels=3,\n", " id2label={0: \"negative\", 1: \"neutral\", 2: \"positive\"},\n", " label2id={\"negative\": 0, \"neutral\": 1, \"positive\": 2}\n", " ).to(self.device)\n", " # Store label2id mapping for easy access\n", " self.hindi_label2id = self.hindi_model.config.label2id\n", "\n", "\n", " # Emotion to sentiment mapping\n", " self.emotion_map = {\n", " \"joy\": \"positive\", \"love\": \"positive\", \"happy\": \"positive\",\n", " \"anger\": \"negative\", \"sadness\": \"negative\", \"fear\": \"negative\",\n", " \"surprise\": \"neutral\", \"neutral\": \"neutral\"\n", " }\n", "\n", " # Neutral keywords\n", " self.neutral_keywords = {\n", " \"ad\", \"sponsored\", \"promo\", \"sale\", \"discount\", \"offer\",\n", " \"विज्ञापन\", \"प्रचार\", \"ऑफर\", \"डिस्काउंट\", \"बिक्री\"\n", " }\n", "\n", " def train_hindi_model(self, train_data, eval_data=None):\n", " \"\"\"\n", " Fine-tune the Hindi/English model on labeled data\n", " Args:\n", " train_data: List of dicts [{\"text\": \"...\", \"label\": \"positive/negative/neutral\"}]\n", " eval_data: Optional evaluation data\n", " \"\"\"\n", " # Convert to dataset\n", " train_dataset = Dataset.from_pandas(pd.DataFrame(train_data))\n", "\n", " # Map string labels to integer IDs\n", " def map_labels_to_ids(examples):\n", " examples[\"label\"] = [self.hindi_label2id[label] for label in examples[\"label\"]]\n", " return examples\n", "\n", " train_dataset = train_dataset.map(map_labels_to_ids, batched=True)\n", "\n", " # Explicitly set the label column to integer type\n", " train_dataset = train_dataset.cast_column(\"label\", Value(\"int64\"))\n", "\n", "\n", " def tokenize_function(examples):\n", " return self.hindi_tokenizer(\n", " examples[\"text\"],\n", " padding=\"max_length\",\n", " truncation=True,\n", " max_length=CONFIG[\"max_length\"]\n", " )\n", "\n", " tokenized_train = train_dataset.map(tokenize_function, batched=True)\n", "\n", " # Training arguments - using eval_strategy instead of evaluation_strategy\n", " training_args = TrainingArguments(\n", " output_dir=\"./results\",\n", " eval_strategy=\"epoch\" if eval_data else \"no\",\n", " per_device_train_batch_size=CONFIG[\"batch_size\"],\n", " per_device_eval_batch_size=CONFIG[\"batch_size\"],\n", " learning_rate=CONFIG[\"learning_rate\"],\n", " num_train_epochs=CONFIG[\"num_train_epochs\"],\n", " weight_decay=0.01,\n", " save_strategy=\"no\",\n", " logging_dir='./logs',\n", " logging_steps=10,\n", " report_to=\"none\"\n", " )\n", "\n", " # Compute metrics function\n", " def compute_metrics(p):\n", " predictions, labels = p\n", " predictions = np.argmax(predictions, axis=1)\n", " return {\n", " \"accuracy\": accuracy_score(labels, predictions),\n", " \"f1\": f1_score(labels, predictions, average=\"weighted\")\n", " }\n", "\n", " # Trainer\n", " eval_dataset_processed = None\n", " if eval_data:\n", " eval_dataset = Dataset.from_pandas(pd.DataFrame(eval_data))\n", " eval_dataset = eval_dataset.map(map_labels_to_ids, batched=True)\n", " eval_dataset_processed = eval_dataset.cast_column(\"label\", Value(\"int64\")).map(tokenize_function, batched=True)\n", "\n", "\n", " trainer = Trainer(\n", " model=self.hindi_model,\n", " args=training_args,\n", " train_dataset=tokenized_train,\n", " eval_dataset=eval_dataset_processed,\n", " compute_metrics=compute_metrics if eval_data else None,\n", " )\n", "\n", " # Train\n", " trainer.train()\n", "\n", " # Save the fine-tuned model\n", " self.hindi_model.save_pretrained(\"./fine_tuned_hindi_sentiment\")\n", " self.hindi_tokenizer.save_pretrained(\"./fine_tuned_hindi_sentiment\")\n", "\n", " def preprocess_text(self, text):\n", " \"\"\"Enhanced text cleaning with multilingual support\"\"\"\n", " if not text:\n", " return \"\"\n", "\n", " # Convert emojis to text\n", " text = emoji.demojize(text, delimiters=(\" \", \" \"))\n", "\n", " # Remove URLs and mentions\n", " text = re.sub(r\"http\\S+|@\\w+\", \"\", text)\n", "\n", " # Expand common abbreviations\n", " abbrevs = {\n", " r\"\\bomg\\b\": \"oh my god\",\n", " r\"\\btbh\\b\": \"to be honest\",\n", " r\"\\bky\\b\": \"kyun\", # Hindi 'why'\n", " r\"\\bkb\\b\": \"kab\", # Hindi 'when'\n", " }\n", " for pattern, replacement in abbrevs.items():\n", " text = re.sub(pattern, replacement, text, flags=re.IGNORECASE)\n", "\n", " return text.strip()\n", "\n", " def detect_language(self, text):\n", " \"\"\"Improved language detection\"\"\"\n", " if re.search(r\"[\\u0900-\\u097F]\", text): # Devanagari\n", " return \"hi\"\n", " elif any(re.search(rf\"\\b{kw}\\b\", text.lower()) for kw in [\"hai\", \"kyun\", \"nahi\"]): # Hinglish\n", " return \"hi-latin\"\n", " return \"en\"\n", "\n", " def analyze_content(self, text):\n", " \"\"\"Main analysis function with improved confidence handling\"\"\"\n", " processed = self.preprocess_text(text)\n", " lang = self.detect_language(processed)\n", "\n", " # Check for neutral keywords first\n", " if any(re.search(rf\"\\b{kw}\\b\", processed.lower()) for kw in self.neutral_keywords):\n", " return \"neutral\", 0.95, {\"reason\": \"neutral_keyword\"}\n", "\n", " try:\n", " if lang in (\"hi\", \"hi-latin\"):\n", " return self._analyze_hindi_content(processed)\n", " else:\n", " return self._analyze_english_content(processed)\n", " except Exception as e:\n", " print(f\"Analysis error: {e}\")\n", " return \"neutral\", 0.5, {\"error\": str(e)}\n", "\n", " def _analyze_hindi_content(self, text):\n", " \"\"\"Analyze Hindi content with fine-tuned model\"\"\"\n", " inputs = self.hindi_tokenizer(\n", " text,\n", " return_tensors=\"pt\",\n", " truncation=True,\n", " padding=True,\n", " max_length=CONFIG[\"max_length\"]\n", " ).to(self.device)\n", "\n", " with torch.no_grad():\n", " outputs = self.hindi_model(**inputs)\n", "\n", " probs = torch.nn.functional.softmax(outputs.logits, dim=-1)\n", " pred_idx = torch.argmax(probs).item()\n", " confidence = probs[0][pred_idx].item()\n", "\n", " label = self.hindi_model.config.id2label[pred_idx]\n", " return label, confidence, {\"model\": \"fine-tuned-indic-bert\"}\n", "\n", " def _analyze_english_content(self, text):\n", " \"\"\"Analyze English content with ensemble approach\"\"\"\n", " # Emotion analysis\n", " emotion_inputs = self.emotion_tokenizer(\n", " text,\n", " return_tensors=\"pt\",\n", " truncation=True,\n", " max_length=CONFIG[\"max_length\"]\n", " ).to(self.device)\n", "\n", " with torch.no_grad():\n", " emotion_outputs = self.emotion_model(**emotion_inputs)\n", "\n", " emotion_probs = torch.nn.functional.softmax(emotion_outputs.logits, dim=-1)\n", " emotion_pred = torch.argmax(emotion_probs).item()\n", " emotion_label = self.emotion_model.config.id2label[emotion_pred]\n", " emotion_score = emotion_probs[0][emotion_pred].item()\n", "\n", " # Sentiment analysis\n", " sentiment_inputs = self.sentiment_tokenizer(\n", " text,\n", " return_tensors=\"pt\",\n", " truncation=True,\n", " max_length=CONFIG[\"max_length\"]\n", " ).to(self.device)\n", "\n", " with torch.no_grad():\n", " sentiment_outputs = self.sentiment_model(**sentiment_inputs)\n", "\n", " sentiment_probs = torch.nn.functional.softmax(sentiment_outputs.logits, dim=-1)\n", " sentiment_pred = torch.argmax(sentiment_probs).item()\n", " sentiment_label = self.sentiment_model.config.id2label[sentiment_pred].lower()\n", " sentiment_score = sentiment_probs[0][sentiment_pred].item()\n", "\n", " # Combine results\n", " mapped_emotion = self.emotion_map.get(emotion_label, \"neutral\")\n", "\n", " if sentiment_score > CONFIG[\"confidence_threshold\"]:\n", " final_label = sentiment_label\n", " final_confidence = sentiment_score\n", " elif emotion_score > CONFIG[\"confidence_threshold\"] and mapped_emotion != \"neutral\":\n", " final_label = mapped_emotion\n", " final_confidence = emotion_score\n", " else:\n", " # Weighted average fallback\n", " emotion_weight = 0.6 if mapped_emotion != \"neutral\" else 0.3\n", " sentiment_weight = 0.4 if sentiment_label != \"neutral\" else 0.2\n", " neutral_weight = 0.3\n", "\n", " pos_score = (emotion_weight * (mapped_emotion == \"positive\") +\n", " sentiment_weight * (sentiment_label == \"positive\"))\n", " neg_score = (emotion_weight * (mapped_emotion == \"negative\") +\n", " sentiment_weight * (sentiment_label == \"negative\"))\n", "\n", " if pos_score > neg_score and pos_score > neutral_weight:\n", " final_label = \"positive\"\n", " final_confidence = (pos_score / (pos_score + neg_score + neutral_weight)) * 0.8\n", " elif neg_score > pos_score and neg_score > neutral_weight:\n", " final_label = \"negative\"\n", " final_confidence = (neg_score / (pos_score + neg_score + neutral_weight)) * 0.8\n", " else:\n", " final_label = \"neutral\"\n", " final_confidence = 0.7\n", "\n", " return final_label, final_confidence, {\n", " \"emotion\": emotion_label,\n", " \"sentiment\": sentiment_label,\n", " \"model\": \"ensemble\"\n", " }\n", "\n", " def analyze_reels(self, reels, max_to_analyze=100):\n", " \"\"\"Batch analysis with improved neutral handling\"\"\"\n", " results = Counter()\n", " detailed_results = []\n", "\n", " for reel in reels[:max_to_analyze]:\n", " caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''\n", " label, confidence, details = self.analyze_content(caption)\n", " results[label] += 1\n", " detailed_results.append({\n", " \"text\": caption,\n", " \"label\": label,\n", " \"confidence\": confidence,\n", " \"details\": details\n", " })\n", "\n", " # Post-analysis neutral reduction\n", " if results[\"neutral\"] / sum(results.values()) > CONFIG[\"neutral_reanalysis_threshold\"]:\n", " self._reduce_neutrals(results, detailed_results)\n", "\n", " return results, detailed_results\n", "\n", " def _reduce_neutrals(self, results, detailed_results):\n", " \"\"\"Apply additional techniques to reduce neutral classifications\"\"\"\n", " for item in detailed_results:\n", " if item[\"label\"] == \"neutral\" and item[\"confidence\"] < 0.8:\n", " # Try keyword analysis\n", " text_lower = item[\"text\"].lower()\n", " pos_keywords = {\"great\", \"awesome\", \"love\", \"best\", \"शानदार\", \"अद्भुत\"}\n", " neg_keywords = {\"bad\", \"worst\", \"hate\", \"खराब\", \"बेकार\"}\n", "\n", " pos_count = sum(1 for kw in pos_keywords if kw in text_lower)\n", " neg_count = sum(1 for kw in neg_keywords if kw in text_lower)\n", "\n", " if pos_count > neg_count and pos_count >= 2:\n", " results[\"neutral\"] -= 1\n", " results[\"positive\"] += 1\n", " item.update({\n", " \"label\": \"positive\",\n", " \"confidence\": min(0.9, item[\"confidence\"] + 0.3),\n", " \"reanalyzed\": True\n", " })\n", " elif neg_count > pos_count and neg_count >= 2:\n", " results[\"neutral\"] -= 1\n", " results[\"negative\"] += 1\n", " item.update({\n", " \"label\": \"negative\",\n", " \"confidence\": min(0.9, item[\"confidence\"] + 0.3),\n", " \"reanalyzed\": True\n", " })\n", "\n", "# Example usage\n", "if __name__ == \"__main__\":\n", " # Initialize analyzer\n", " analyzer = ReelSentimentAnalyzer()\n", "\n", " # Example training (in practice you'd load real labeled data)\n", " train_data = [\n", " {\"text\": \"I love this product!\", \"label\": \"positive\"},\n", " {\"text\": \"This is terrible quality\", \"label\": \"negative\"},\n", " {\"text\": \"Just sharing my order details\", \"label\": \"neutral\"},\n", " {\"text\": \"यह उत्पाद अद्भुत है!\", \"label\": \"positive\"},\n", " {\"text\": \"बहुत खराब गुणवत्ता\", \"label\": \"negative\"},\n", " {\"text\": \"यह एक सामान्य उत्पाद है\", \"label\": \"neutral\"} # Added a neutral Hindi example\n", " ]\n", "\n", " # Fine-tune the Hindi model\n", " print(\"Starting Hindi model training...\")\n", " analyzer.train_hindi_model(train_data)\n", " print(\"Hindi model training complete.\")\n", "\n", "\n", " # Analyze some reels (mock data)\n", " class MockReel:\n", " def __init__(self, caption):\n", " self.caption_text = caption\n", "\n", " mock_reels = [\n", " MockReel(\"This is amazing! Love it so much 😍\"),\n", " MockReel(\"Not happy with the quality at all\"),\n", " MockReel(\"Check out our new sale - 50% off everything\"),\n", " MockReel(\"मुझे यह उत्पाद पसंद नहीं आया\"), # Hindi: I didn't like this product\n", " MockReel(\"यह एक सामान्य रील है\"), # Hindi: This is a normal reel\n", " MockReel(\"Great weather today! Awesome vibes.\"),\n", " MockReel(\"Worst movie ever. Hate it.\")\n", " ]\n", "\n", " print(\"\\nAnalyzing mock reels...\")\n", " results, details = analyzer.analyze_reels(mock_reels)\n", " print(\"\\nFinal Results:\")\n", " for label, count in results.items():\n", " print(f\"{label}: {count}\")\n", "\n", " print(\"\\nDetailed Results:\")\n", " for item in details:\n", " print(f\"Text: {item['text'][:50]}...\")\n", " print(f\" Label: {item['label']} (Confidence: {item['confidence']:.2f})\")\n", " print(f\" Details: {item['details']}\")\n", " if 'reanalyzed' in item:\n", " print(\" Reanalyzed: Yes\")\n", " print(\"-\" * 20)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 954, "referenced_widgets": [ "45eec1be3a594149903926a6bc428eea", "9078e76353764dceb7cf93bc33a6463d", "fe9a55d7eb6e4013ad1e781b01edd53d", "c7bd4b1f12d549f5a6b5ebb714bf5946", "60ce45c92536449682c51c670b9a05be", "d45ad91af4f042938294340c44188773", "734caeff9c014c27b374922b82fffdd0", "e76209249d094aaa88af45102271bbc1", "437209703da64cb78ac38c57834d1db0", "230c23d8b2654debb2405d1fae2bd772", "dd62e1e5d5da48e1887be89a74d50a6e", "6ec35d98aa3d453aa35d1f3494ff06b0", "0ebd9010697542aa9862eec60acdd03b", "26b44a397c50412696beb5cecc3b7d05", "2f67bd22b78e4fa193816e7db10b2410", "df02dab90c58468c9350094dd517c7b7", "7a2532f556d0452bafd6aef90d06b66d", "bbf4d362165f433fbd39884e143fbd41", "81ead583e5aa461eb391bd0241bfbefb", "a1e36b507583414e8e052c0bd9023f74", "b3b00fc23c3445cfb24edb9f5cca6a15", "3232892540c24cfab17952583950bbfb" ] }, "outputId": "02e307ca-8c6c-4103-baed-a5c41196164d", "id": "QuJyYbDdWzQ0" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Some weights of the model checkpoint at cardiffnlp/twitter-roberta-base-sentiment-latest were not used when initializing RobertaForSequenceClassification: ['roberta.pooler.dense.bias', 'roberta.pooler.dense.weight']\n", "- This IS expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n", "- This IS NOT expected if you are initializing RobertaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n", "Some weights of AlbertForSequenceClassification were not initialized from the model checkpoint at ai4bharat/indic-bert and are newly initialized: ['classifier.bias', 'classifier.weight']\n", "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "Starting Hindi model training...\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "Map: 0%| | 0/6 [00:00" ], "text/html": [ "\n", "
\n", " \n", " \n", " [3/3 00:16, Epoch 3/3]\n", "
\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
StepTraining Loss

" ] }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "Hindi model training complete.\n", "\n", "Analyzing mock reels...\n", "\n", "Final Results:\n", "positive: 2\n", "negative: 4\n", "neutral: 1\n", "\n", "Detailed Results:\n", "Text: This is amazing! Love it so much 😍...\n", " Label: positive (Confidence: 0.99)\n", " Details: {'emotion': 'joy', 'sentiment': 'positive', 'model': 'ensemble'}\n", "--------------------\n", "Text: Not happy with the quality at all...\n", " Label: negative (Confidence: 0.90)\n", " Details: {'emotion': 'others', 'sentiment': 'negative', 'model': 'ensemble'}\n", "--------------------\n", "Text: Check out our new sale - 50% off everything...\n", " Label: neutral (Confidence: 0.95)\n", " Details: {'reason': 'neutral_keyword'}\n", "--------------------\n", "Text: मुझे यह उत्पाद पसंद नहीं आया...\n", " Label: negative (Confidence: 0.34)\n", " Details: {'model': 'fine-tuned-indic-bert'}\n", "--------------------\n", "Text: यह एक सामान्य रील है...\n", " Label: negative (Confidence: 0.34)\n", " Details: {'model': 'fine-tuned-indic-bert'}\n", "--------------------\n", "Text: Great weather today! Awesome vibes....\n", " Label: positive (Confidence: 0.99)\n", " Details: {'emotion': 'joy', 'sentiment': 'positive', 'model': 'ensemble'}\n", "--------------------\n", "Text: Worst movie ever. Hate it....\n", " Label: negative (Confidence: 0.95)\n", " Details: {'emotion': 'others', 'sentiment': 'negative', 'model': 'ensemble'}\n", "--------------------\n" ] } ] }, { "cell_type": "code", "source": [ "import matplotlib.pyplot as plt\n", "\n", "def plot_sentiment_pie(results, title=\"Reels Sentiment Analysis\"):\n", " \"\"\"\n", " Creates a pie chart from sentiment analysis results\n", "\n", " Args:\n", " results: Counter object or dict with 'positive', 'neutral', 'negative' keys\n", " title: Chart title (default: \"Reels Sentiment Analysis\")\n", " \"\"\"\n", " # Prepare data\n", " labels = ['Positive', 'Neutral', 'Negative']\n", " sizes = [results['positive'], results['neutral'], results['negative']]\n", " colors = ['#4CAF50', '#FFC107', '#F44336'] # Green, Yellow, Red\n", " explode = (0.05, 0, 0.05) # Slight highlight on positive and negative\n", "\n", " # Create figure\n", " fig, ax = plt.subplots(figsize=(8, 6))\n", " ax.pie(sizes, explode=explode, labels=labels, colors=colors,\n", " autopct='%1.1f%%', shadow=True, startangle=140,\n", " textprops={'fontsize': 12})\n", "\n", " # Equal aspect ratio ensures pie is drawn as circle\n", " ax.axis('equal')\n", "\n", " # Add title and styling\n", " plt.title(title, fontsize=16, pad=20)\n", " plt.tight_layout()\n", "\n", " return fig\n", "\n", "# Example usage with the previous analyzer results\n", "if __name__ == \"__main__\":\n", " # (Assuming you've already run the analyzer and have results)\n", " # results, details = analyzer.analyze_reels(mock_reels)\n", "\n", " # Mock results for demonstration\n", " example_results = {\n", " 'positive': 45,\n", " 'neutral': 30,\n", " 'negative': 25\n", " }\n", "\n", " # Generate and show the pie chart\n", " chart = plot_sentiment_pie(example_results,\n", " title=\"Instagram Reels Sentiment Distribution\")\n", " plt.show()\n", "\n", " # To save the chart:\n", " # chart.savefig('reels_sentiment.png', dpi=300, bbox_inches='tight')" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 607 }, "id": "QQS7wMMO8N7o", "outputId": "4fe8c162-4c7b-4d15-c364-eb8ba4944669" }, "execution_count": 28, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "

" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAyZxJREFUeJzs3Xdc1dX/B/DX5w72kA2KKCruvXBLw1VqrtLMNBtu+zUsG5ZZNrS0bPo1SzPb2XCUWxD3BAdDZO+94e7P7w+CJLh4r8C9F3g9e/hIP+ece94XLpfP+54liKIogoiIiIiIqB4k5g6AiIiIiIiaPiYWRERERERUb0wsiIiIiIio3phYEBERERFRvTGxICIiIiKiemNiQURERERE9cbEgoiIiIiI6o2JBRERERER1RsTCyIiIiIiqjcmFtTktW/fHoIgYPv27eYOhRrBG2+8AUEQqv2RSqVwcXHBkCFD8M4776CkpMTcYVa9DhMSEhq1n5iYGCxbtgzdu3eHvb09bGxs4Ovri0GDBmHZsmXYtWtXo/bfEIKDgyEIAoKCgswdikUKCgqq8Zq3t7eHj48Phg8fjuXLl+Po0aMQRVHvYzz22GMW9b5Y+ZyCg4OrXbe0OIF/33PeeOMNc4dC1OQwsSCqJ0v8xdgceXl5Yd68eZg3bx5mzZqFrl274ty5c3j11VcxcOBAZGdnmzvERvfbb7+hV69e+Oyzz5CVlYXhw4dj+vTp6N27N1JTU/HZZ59h4cKF5g6z6ma4pWqo94Q+ffpUveYfeOAB9O7dG7Gxsfj0009xzz33oG/fvrh8+XLDBK2HvoSgqWJSS9S4ZOYOgIjIEF27dq1xo3b8+HGMGTMG0dHReOONN/DZZ5+ZJzgTyMzMxLx586BUKvH8889j7dq1sLGxqVbn4sWL+PXXX80UoeEGDx6MyMhI2NnZmTsUizZlypRaPzUPDQ3FihUrcO7cOYwYMQIhISEYOHBgtTrvvvsuXnrpJfj4+Jgo2rrt2LEDZWVl8PPzM3cot7Vs2TLMmjUL7u7u5g6FqMnhiAURNVmjRo3CvHnzAAB79uwxczSNa+/evSgpKUHr1q3xwQcf1EgqAGDAgAF49913zRCdcezs7NC1a9cmcZNpiUaOHInQ0FCMGDECZWVlmD17NrRabbU6Pj4+6Nq1K5ydnc0UZXV+fn7o2rVrk0gm3d3d0bVrVyYWRHeAiQU1W7fOk83OzsbSpUvRtm1bWFlZoW3btli+fDkKCgpqbfvLL7/g3nvvhZubG+RyOdzc3NC9e3c89dRTuHLlCgAgISEBgiDgm2++AQDMnz+/2pzoWz9pPHfuHF588UUMHjwY3t7esLKygpeXFyZNmoTDhw/rfQ6iKOLrr7/GwIEDYWdnBzc3N0yYMAGnTp3SO6R/6/WysjK8/vrr6NatG+zs7NC+fft6xbR9+3YIgoDHHnsMhYWFeO6559C+fXvY2NggICAA69atg06nAwCkpqZi4cKFaNu2LaytrdGlSxd88sknt/muGa93794AKj7Rr01aWhqee+65qq+Bo6MjBg0ahE8//RQajUbv4x45cgTTpk2Dj48PrKys4OnpialTp+L06dNGxVdYWIhVq1ahV69esLe3h7W1NVq3bo3hw4fj9ddfh1qtNuhxKp+fh4eHUf1X0mg02Lp1K4KCguDq6gpra2v4+/tj8eLFSE5OrlH/1teRWq3GunXr0KNHD9ja2sLNzQ3Tpk1DZGRktTaVP3OV/rtOoHL9ib7XbuXPVPv27aHT6fDxxx+jd+/esLOzg4+PDxYtWoS8vDwAgFKpxFtvvYWuXbvC1tYWrVu3xv/93/+htLRU79fg4sWLeOSRR+Dn5wdra2u4urpi3Lhx+Ouvv2qtf+u6mWPHjmHs2LFwcXGBra0t+vfvjx07dtQavyHvCfVlZWWFzZs3A6hYd/PHH39UK9c3HUun02HLli0YPnw4WrVqBblcDk9PT/Tp0wfLly+v8T0KCQkBANx1113Vnkvl4976PdNqtdi4cSP69esHBweHaq8FQ6ZUhYeHY9q0afDw8ICtrS169+6NTZs21Uia6np+lW59r7o1hrvuugsAEBISUu353PreeLs1FgcOHMDEiRPh6ekJKysrtG7dGjNnzsSFCxdqrX/rcw8LC8O0adPg7u4Oa2trdO/eHRs2bKhzvQxRU8KpUNTsJScno3///lCr1Rg+fDgUCgVOnjyJTz/9FGfPnsXJkychl8ur6r/55ptYvXo1ZDIZhg0bhjZt2qCwsBBJSUn46quv0KNHD/Tu3RsODg6YN28eTpw4gdjYWAwfPhydOnWqepy+fftW/f2VV17BsWPH0KNHDwwYMAD29vaIjY3F3r17sXfvXnz00Uf4v//7vxqxL126FF988QUkEglGjhwJHx8fXL16FaNGjcIzzzxT5/NWKBQICgpCREQERo0ahT59+iA3N7feMQFAQUEBhg4ditzcXIwcORLFxcUIDQ3FSy+9hJSUFDzzzDMYMWIE5HI5hg0bhuzsbBw/fhxPP/00ysrKsHLlSgO/e7dXVFQEoGINxn8dP34cU6ZMQX5+Ptq3b48xY8ZAqVTi3LlzWL58Ofbs2YO9e/dW+/4DwIoVK7BhwwZIJBIMHDgQI0eORFJSEv7880/s2bMHX375JebPn3/b2MrKyjBixAhcu3YNHh4euOeee2Bvb4+MjAxERUXh1KlTeO6559CqVavbPlblp/vXrl3DkSNHcM899xjw1alQXFyMyZMnIzg4GA4ODhgwYAA8PDxw9epVbN68Gb/88gsOHTqEfv361WirVqtx33334dSpUxg1ahS6deuGc+fO4ffff8exY8dw+fLlqpuyvn37Yt68eVU31pWjSZUcHBwMjnnOnDn4448/MHr0aHTs2BGnTp3C//73P5w7dw6hoaEYP348rly5gqCgIAQEBCA0NBQff/wxYmJiak0UNm3ahOeeew46nQ59+/ZFYGAgMjIyEBwcjIMHD2LNmjV4/fXXa43l66+/xtq1a9G/f3+MHz8eCQkJOHPmDObNm4e8vLyqn0Vj3hMaQo8ePdCvXz9cvnwZhw4dwvTp02/b5sknn8S2bdtgY2ODESNGwMPDA3l5eYiLi6tau9G+fXt4e3tj3rx52L9/PzIzMzFu3Dh4e3tXPc6tzwuo+BBk2rRp2L9/P0aOHIlu3brh+vXrBj+Xc+fOYfHixfD29sY999yD/Px8BAcH45lnnsGJEyfw888/13vdzvjx42FjY4MDBw7Ay8sL48ePryozdHTitddew9q1ayEIAoYNGwY/Pz9ERkbi559/xq5du7BlyxY8/vjjtbY9cOAANm7ciI4dO2LMmDFIT0/HiRMnsGLFCiQnJ+Ojjz6q1/MjsggiURPXrl07EYC4bdu2atdXr14tAhABiI899pioUCiqypKSksQ2bdqIAMTvv/++6rpCoRBtbW1FBwcHMSoqqkZfCQkJYmRkZLVr8+bNq7X/W/31119iWlpajeunTp0SnZycRLlcLqakpFQr+/PPP0UAooODg3jy5MlqZRs2bKh6bqNHj65WduzYsaqy3r17i+np6Q0W07Zt26oee9KkSWJpaWlV2cWLF0WZTCZKJBKxe/fu4qJFi0S1Wl1V/scff4gARCcnp2rtbqfy+/jf51lp2LBhIgBx6dKl1a6np6eLbm5uoiAI4ueffy5qtdqqspycHPHuu+8WAYhr1qyp1m7Lli0iALFTp05ieHh4tbKQkBDR0dFRtLKyEm/cuFGtrPJ1GB8fX3Xtm2++EQGIEyZMEFUqVbX6Wq1WDA4OFpVKpUFfh+Li4qrXrCAIYlBQkPjWW2+J+/btE7OysupsO3v2bBGAOHHiRDEzM7Na2YcffigCEAMCAkSNRlN1/dbXUb9+/aq9jsrLy8Vx48aJAMQFCxbU6K+ynT6Vj/3f72l8fHxV244dO4oJCQlVZTk5OWJAQIAIQOzVq5c4ePBgMScnp6o8Li5OdHFxEQGIJ06cqPa4+/fvFwVBEN3d3cWQkJBqZVeuXBF9fX1FAGJwcHC1ssrvqVwuF/fs2VOtrPJnwdnZWSwrK6tWZsh7Ql1Gjx4tAhBXr15927pPPvmkCEAcMWLEbWNITEwUAYi+vr61vi9ERESIiYmJtcZy7NixWvu/9Xvm6+srRkdH1/mc/vs4lXECEJcsWVLtPePatWuih4eHCEDcvHnzbZ/frSq/P/Pmzat2Xd9r71aV7zn//fr//fffIgDRxsZGPHjwYLWyrVu3Vr1Wrl27Vutzr+15HDlyRBQEQZRKpWJycrLemIiaCk6FombP19cXn332GaytrauuVU6FAlBt2k9RURHKy8vRoUMHdOnSpcZjtWvXDl27djU6hgkTJtS6iHLo0KFYunQp1Go1/vzzz2plmzZtAgAsX74cw4YNq1b23HPPYdCgQbft99NPP632KWN9Y6rk4OCArVu3Vpsv3b9/f9x3333Q6XQoKSnBhx9+CJns30HRBx54AL169UJRUZHeKQOGUqvViIqKwvz583Hq1Cn07dsXa9asqVbno48+Qm5uLpYuXYrFixdDIvn37c7NzQ07duyAXC7Hp59+WjUNQafTVU1/+PHHH6umWVUaNWoUXnvtNahUKvzvf/+7bZyV05fGjBlTY1REIpFg9OjRsLKyMug5Ozg44MiRIwgMDIQoiggODsZrr72G+++/H56enujXrx82b95cY9pIZGQkfvjhB7Ru3Rrff/89PD09q5U/88wzuO+++xATE4O///67Rr+CIGDbtm3VXkc2NjZVX++6pvLVx8cff4x27dpV/dvNzQ2LFy8GUDFq89VXX8HNza2q3N/fH3PmzAFQMY3tVqtXr4Yoiti8eTNGjRpVraxXr17YuHEjAOidqrd8+XJMnDix2rXHHnsMXbt2RWFhYb1fz/VR+Un7raOR+lS+Hvv371/r+0K3bt3qte7lnXfeQefOne+orY+PDzZs2FDtPaNHjx5Vo0gbNmy447gaygcffAAAWLJkCcaMGVOt7IknnsDEiROhVqur3rv/a9q0aTV2bbv77rsxbtw4aLVaHDt2rHECJzIhToWiZu+ee+6pdcFgt27dAFSsBajk4eGB9u3b48qVK3j++efxxBNPoHv37g0SR25uLvbt24dr164hPz+/am59TEwMACA6OrqqrkajwalTpwAAjzzySK2PN3v2bJw/f15vf56enhg5cmSDxXSrAQMG1LhBBYCAgAAAFfOxa1tcHBAQgKtXryItLa3OuGpTOSf6vyZNmoRff/21xg36vn37AAAzZ86s9fHatGmDgIAAREREICYmBp07d8bly5eRlpaGjh07YsCAAbW2q1wXUPn9qUtl8rd+/Xq4ublh4sSJcHV1vW07fbp06YIzZ87g3Llz2LdvH86ePYtLly4hOzsbYWFhWLx4MXbt2oV9+/ZVfT3++usviKKICRMmwNHRUe9z+uuvv3Dq1KkaN9B+fn7o06dPjTa1/fw0FJlMhrFjx9a4Xvn68vPzQ8+ePfWW3/r6ysnJwblz52Bra4tJkybV2t/tvqf62nXr1g1RUVGN8jUwVOWaJkOmCXXt2hWOjo7466+/8Pbbb2P27Nnw9/dvsFgMmYqlz0MPPVTre8a8efOwfPlyxMTEIC0tDa1bt65PiHdMo9Hg5MmTAFBt3catnnjiCezdu1dvglDX62j//v1mfR0RNRQmFtTs6fsEzsnJCUDFWoRb7dixAzNmzMDGjRuxceNGuLq6IjAwEGPGjMGjjz56RzuFfPnll3j22WfrXFhauVYAqLgZqozr1kWFt9J33dByY2O6lb6vaeUcen3llTe2//2aG+LWOdFlZWUIDw/HjRs3sGfPHrz22mtYt25dtfpxcXEAcNvkCgCys7PRuXPnqjaxsbG3vVEz5NyMoKAgrFy5Eu+//z7mzZsHQRAQEBCA4cOH44EHHsCkSZOqjaQYavDgwRg8eDCAirntly9fxvvvv48ff/wRhw8fxqZNm/DCCy8A+Pfr8NVXX+Grr74y+jnd7udHqVQaHf/t+Pj4VPvkutKdvL7i4+MhiiLKy8urjVrWRt/31Nj3EFPKyckBAIMSVkdHR2zbtg3z58/HqlWrsGrVKvj4+GDIkCEYP348Zs+ebdQ6mFt5enrWa8cnfQmOo6Mj3NzckJubi5SUFLMlFrm5uVXfZ32xduzYEYD+ZNuSX0dEDYWJBTV7xt64jRw5EgkJCdi3bx9CQkJw6tQpHDhwAH///TdWr16N33//3aiFsxcvXsTChQshlUqxbt06TJo0CX5+frCzs4MgCNiyZQsWLlxo9K4gt7vxtbW1bbSYbvc1vZOb5dup7RyLTz75BE8//TTWr1+P0aNH47777qsqq/wkd8aMGbC3t6/zsSun1FS28fb2xrhx4+psY2iC+d5772HRokXYs2cPTpw4gZMnT2Lbtm3Ytm0bBg0ahGPHjt02vroIgoD+/fvjhx9+QFlZGXbv3o0//vijKrGofE59+/atdeThVoGBgTWuNcb38nYa8vVV+fwdHBzu+BN1c3wNDHXp0iUAFVO6DDF9+nTce++92L17N0JDQ3Hy5En8/vvv+P333/H666/j0KFDBj/Wrep6v2koxrxHVn7fLYklv46IGgoTC6Ja2NraYsaMGZgxYwaAik8yV61aVbXjR2JiosGP9csvv0AURSxfvhwvvvhijfLKaUe3cnNzg7W1NZRKJRITE2udjlW5LeSduJOYLNHy5ctx7tw57Ny5E8899xzGjh1b9Ul327ZtERMTg5UrV9Y4PEyftm3bAqj4+jfkSert27fH8uXLq9b1nD9/HnPmzMH58+exfv36GutD7tTYsWOxe/fuqk+xgX+f0/Dhw/Hpp582SD9NSeXzFwQBX3/9dbO6ubt+/TrCwsIAoNapY/o4Ozvj0UcfxaOPPgqgYue85cuX488//8SyZcuqtpg1pfj4+FqvFxcXV60f8fX1rbpeOdWvuLi41nbGvEcb4tb35Li4uBrrr4B/RwfbtGnToH0TNSXN5x2WqBF5eHhg/fr1AICkpCTk5+dXlVX+gtN3JkLlvvu3LkStpFAosGvXrhrX5XI5hg4dCgD4/vvva33cH374wYhnUP+YLNW6detga2uL6OhofPvtt1XXJ0yYAAD4+eefDX6sQYMGwd3dHREREUZtlWmsQYMGYcmSJQBQdWN4O4Z8WpuUlASg+g1Y5ddh9+7dJptqUblQva5zQkyldevW6N27N4qLi7F//36T9Hm794SGoFKpsGjRIgAVo3mTJ0++48dq27ZtVXL739ejKZ4LUPFhR23T6ip/pjt16lTthr3y7/89SwWo+FmpbSMC4M6fj0wmw4gRIwBA74cOX3/9NQBUnZVB1BIxsSC6RWJiIrZu3Vrr2oLKk51dXFyq5sQC/97E6bsRrVzk+s0331T7dE2hUGDJkiV6P6l7+umnAVTsjnPmzJlqZZs2bcLZs2cNfVoNFpMlat26ddVIwNq1a6tuGF544QW0atUKGzduxIYNG6BSqWq0jY+Px86dO6v+LZfLq3YQmjp1Kk6cOFGjjVarxdGjR2t8T2rz+++/4/jx4zWmZajV6qqb3NqSu9p8/vnnmDdvXq0LjEVRxG+//VY1IjFr1qyqsn79+mH69OlITk7GtGnTah3pKi0txXfffaf3kEFj3e5nwtTWrl0LoOLAutpOaBdFEWfPnsXBgwcbpL/Gfv4nT57EyJEjceLECTg4OOC7774zaCTm8uXL+Omnn1BeXl6jrPLr8t/Xo6m+l2lpaVixYkW1Xc0iIyPx5ptvAgCeffbZavXvvfdeABWJR0RERNV1tVqNlStX6t3YovL5xMTEGHw4ZaXnn38eAPDFF1/U2Hls+/bt2L17N+Ryud7zf4haAk6FIrpFfn4+nnrqKSxZsgR9+/atWqQXExODy5cvQxAEvP/++5BKpVVtpkyZgjVr1uDjjz/GtWvX0LZtW0gkEkyePBmTJ0/G/PnzsWnTJly+fBn+/v4YOXIkpFIpQkNDUV5ejv/7v/+rdXvCqVOnYsGCBdiyZQtGjBhR7YC8yMhIPPvss/jwww8N3q70Vncak6V66aWXsGXLFsTFxWHbtm146qmn4Ovriz///BPTp0/HihUrsH79evTs2RM+Pj4oLCxEZGQkYmNjERgYWLVNKQAsW7YMSUlJeP/99zFy5Ej06NEDnTp1gq2tLTIyMhAWFoaCggJ88cUXGDJkSJ1xhYSEYNOmTXB3d0e/fv3g6emJ4uJinDlzBllZWWjTpk2tU9Fqo1arsWPHDuzYsQMeHh7o168f3N3dUVBQgIiIiKqEYc6cOXjiiSeqtd22bRsKCgrw999/o0uXLujTpw/8/f0hiiISEhIQHh4OlUqFyMjIWg8aNNb06dPxwQcf4N5778Xdd99dtah63bp11baINZVJkyZh06ZNeP755zF58mR06tQJXbp0gbOzM7KzsxEeHo6srCysXLnSqClF+tzuPcFQf/zxR9X3Va1WIy8vD2FhYcjIyAAA9OnTB9u3bzf44L3ExETMmjWr6uTwtm3bQqPR4OrVq4iOjoaVlVXVyGyl6dOnY9u2bXjxxRdx+PBheHp6QhAEPP744zW2wa6PRYsWYevWrdi3bx8CAwORn5+PY8eOQaVSYerUqVVbDVeq3ADhzz//xMCBAzFixAjY2tri0qVLKCoq0vse5ufnh4EDB+LChQvo1asXBg4cCBsbG7i7u+O9996rM8YJEyZg1apVWLt2LcaMGYPhw4fDz88PUVFRuHTpEqRSKTZv3owePXo02NeFqKlhYkF0i44dO+Kjjz5CSEgIrl27VrVVZ5s2bTB37lw8/fTTNbYh7d27N3bt2oUPPvgAZ8+exZEjRyCKInx9fTF58mS0atUKFy5cwOrVq6sWgbu5uWHs2LFYvXp1rZ+KV9q8eTMGDRqEL774AmfOnIGNjQ0GDx6Mzz//vOqG4052qapPTJbIxcUFK1euxMsvv4y3334b8+bNg5WVFUaNGoXr16/j008/xb59+3D+/HkolUp4enrCz88Pc+bMqXVB7/r16zFlyhR8/vnnOHHiBPbv3w8rKyv4+PggKCgIEydOxLRp024b12OPPQZbW1ucOHECERERCAkJgbOzM/z8/PDMM89gwYIFBt9oP/HEE/D398eRI0dw9uxZREREIDMzEzKZDK1bt8bDDz+MuXPnVjtNuJKjoyMOHjyIn376CTt37sTFixcRFhYGJycn+Pj44JFHHsHkyZOrdrWpr7feegsSiQS//fYb/vjjj6rRolWrVpklsQAqRgDvvvtufPLJJzh27BiOHDkCiUQCb29v9OvXD/fff3+9tku91e3eEwwVHh6O8PBwABXrvpydneHv748ZM2Zg6tSpuOuuu4w6jXrIkCF47733cPz4cURGRuLy5cuQyWTw9fXF0qVLsXz58hrn99x///348ssv8cUXX+Do0aMoKysDAIwYMaJBE4vAwEAsWLAAq1evxqFDh1BSUoKAgAA88cQTWL58ea3P86effsLatWvx/fffIzg4GC4uLrjnnnvw1ltvITQ0VG9fu3btwssvv4xjx47hp59+gkajQbt27W6bWAAVr+3hw4fjk08+wdmzZ3HmzBm4u7vjwQcfxIoVK6p2ayNqqQTR2K1oiMgiPP7449i2bRs2bNiA5557ztzhEBERUQvHNRZEFuz69es1zpnQ6XT48ssvsX37dtjY2ODhhx82U3RERERE/+JUKCIL9v777+Pnn39Gv3790KZNG5SWllbNp5dKpfj888/h4+Nj7jCJiIiImFgQWbKZM2eiqKioak68RqOBp6cnZs6ciWeeeea2i4eJiIiITIVrLIiIiIiIqN64xoKIiIiIiOqNiQUREREREdUbEwsiIiIiIqo3JhZERERERFRvTCyIiIiIiKjemFgQEREREVG9MbEgIiIiIqJ6Y2JBRERERET1xsSCiIiIiIjqjYkFERERERHVGxMLIiIiIiKqNyYWRERERERUb0wsiIiIiIio3phYEBERERFRvTGxICIiIiKiemNiQURERERE9cbEgojITN544w0IgmDuMIiIiBoEEwsiapK2b98OQRBgY2OD1NTUGuVBQUHo2bOnGSKrrqysDG+88QaCg4PNHQoREVGjYmJBRE2aUqnEe++9Z+4w9CorK8OaNWtqTSxWrVqF8vJy0wdFRETUCJhYEFGT1rdvX3z55ZdIS0szdyhGk8lksLGxMXcYREREDYKJBRE1aa+88gq0Wq1BoxY7d+7EgAEDYGtrC1dXV8yaNQvJyck16n322Wfo0KEDbG1tMXjwYISGhiIoKAhBQUFVdVQqFV5//XUMGDAAzs7OsLe3x8iRI3Hs2LGqOgkJCfDw8AAArFmzBoIgQBAEvPHGGwBqrrHo2bMn7rrrrhrx6HQ6tGnTBjNmzKh27aOPPkKPHj1gY2MDLy8vLFy4EPn5+bf9OhARETUGJhZE1KT5+/tj7ty5tx21ePvttzF37lwEBARg48aNeOaZZ3DkyBGMGjUKBQUFVfW++OILLFu2DL6+vli/fj1GjhyJKVOmICUlpdrjFRUVYevWrQgKCsK6devwxhtvIDs7G+PGjUNYWBgAwMPDA1988QUAYOrUqfj222/x7bffYtq0abXGOHPmTBw/fhwZGRnVrp84cQJpaWmYNWtW1bWFCxfihRdewPDhw7Fp0ybMnz8f3333HcaNGwe1Wm3Ml5CIiKhhiERETdC2bdtEAOL58+fF2NhYUSaTiU8//XRV+ejRo8UePXqIoiiKCQkJolQqFd9+++1qj3H16lVRJpNVXVcqlaKbm5s4aNAgUa1WV9Xbvn27CEAcPXp01TWNRiMqlcpqj5efny96eXmJjz/+eNW17OxsEYC4evXqGs9h9erV4q1vw9HR0SIA8ZNPPqlWb8mSJaKDg4NYVlYmiqIohoaGigDE7777rlq9/fv313qdiIjIFDhiQURNXocOHfDoo49iy5YtSE9Pr1H+22+/QafT4aGHHkJOTk7VH29vbwQEBFRNX7pw4QJyc3Px1FNPQSaTVbV/5JFH4OLiUu0xpVIprKysAFRMS8rLy4NGo8HAgQNx6dKlO3oenTt3Rt++ffHTTz9VXdNqtfj1118xadIk2NraAgB++eUXODs7Y8yYMdWez4ABA+Dg4FBtOhYREZGpMLEgomZh1apV0Gg0ta61iImJgSiKCAgIgIeHR7U/kZGRyMrKAgAkJiYCADp16lStvUwmQ/v27Ws87jfffIPevXvDxsYGbm5u8PDwwL59+1BYWHjHz2PmzJk4efJk1Ra6wcHByMrKwsyZM6s9n8LCQnh6etZ4PiUlJVXPh4iIyJRkt69CRGT5OnTogDlz5mDLli146aWXqpXpdDoIgoC///4bUqm0RlsHBwej+9u5cycee+wxTJkyBS+88AI8PT0hlUrx7rvvIjY29o6fx8yZM/Hyyy/jl19+wTPPPIOff/4Zzs7OGD9+fLXn4+npie+++67Wx6hcME5ERGRKTCyIqNlYtWoVdu7ciXXr1lW73rFjR4iiCH9/f3Tu3Flv+3bt2gEAbt68WW13Jo1Gg4SEBPTu3bvq2q+//ooOHTrgt99+q7az0+rVq6s9prEna/v7+2Pw4MH46aefsGzZMvz222+YMmUKrK2tqz2fw4cPY/jw4VXTo4iIiMyNU6GIqNno2LEj5syZg//973/VdlaaNm0apFIp1qxZA1EUq7URRRG5ubkAgIEDB8LNzQ1ffvklNBpNVZ3vvvuuxjaulSMftz7e2bNncfr06Wr17OzsAKDazlO3M3PmTJw5cwZff/01cnJyqk2DAoCHHnoIWq0Wb731Vo22Go3GqL6IiIgaCkcsiKhZefXVV/Htt98iOjoaPXr0AFCRcKxduxYvv/wyEhISMGXKFDg6OiI+Ph6///47FixYgBUrVsDKygpvvPEGli9fjrvvvhsPPfQQEhISsH37dnTs2LHa6MPEiRPx22+/YerUqbj//vsRHx+PzZs3o3v37igpKamqZ2tri+7du+Onn35C586d4erqip49e6Jnz556n8NDDz2EFStWYMWKFXB1dcW9995brXz06NFYuHAh3n33XYSFhWHs2LGQy+WIiYnBL7/8gk2bNlU784KIiMgUOGJBRM1Kp06dMGfOnBrXX3rpJezatQsSiQRr1qzBihUrsHv3bowdOxaTJ0+uqrds2TJ8/PHHSEpKwooVKxAaGordu3ejVatW1U7Jfuyxx/DOO+8gPDwcTz/9NA4cOICdO3di4MCBNfreunUr2rRpg2effRYPP/wwfv311zqfg6+vL4YNG4bi4mJMmzYNcrm8Rp3Nmzdjy5YtyMrKwiuvvIKXX34ZR48exZw5czB8+HBjvmREREQNQhD/Oy+AiIiq0el08PDwwLRp0/Dll1+aOxwiIiKLxBELIqJbKBSKGuswduzYgby8PAQFBZknKCIioiaAIxZERLcIDg7Gs88+iwcffBBubm64dOkSvvrqK3Tr1g0XL16sOhSPiIiIquPibSKiW7Rv3x5t27bFxx9/jLy8PLi6umLu3Ll47733mFQQERHVgSMWRERERERUb1xjQURERERE9cbEgoiIiIiI6o2JBRERERER1RsTCyIiIiIiqjcmFkREREREVG9MLIiIiIiIqN6YWBARERERUb0xsSAiIiIionpjYkFERERERPXGxIKIiIiIiOqNiQUREREREdWbzNwBEBGR+YlaLaBUAEoFRKWy4v8KJaD65/9qFSCRVP0RJNKKv0slQOXf//m/IJUCdnYQ7B0AewcIEn6GRUTUEjCxICJqZsTiIoh5uf/+yc+DWJgPsaAAYlEBxMICiEWFQGkJREVFMgGNpnGCEQTA9p8kw8ERgoMDBAdHwN4egv0//27lCsHTC4K7JwQPTwgurhAEoXHiISKiRiOIoiiaOwgiIjKcWF4OMT0FurRU6FKTIaanQpeWCjE9FWJuDqBSmjvE+pHLIbi5VyUaEnfPfxMP79aQ+LWDYG1j7iiJiOg/mFgQEVkgUauBmJQIXfzNiuQhLRW6tBSIaSkQ8/PMHZ55CQIEL29I/NpDaOcPiZ8/JH7tK/7t6GTu6IiIWiwmFkREZiaWl0EXGwNd7A3obsZAFxsNXUJ80x95MAPBxRWCX/uKZMO/IyRdukPSMQCCjDN/iYgaGxMLIiITEouLoI28Bt3NGxV/Ym9ATEsB+FbceKysIenQCZJuPSDt2qMi2fD1M3dURETNDhMLIqJGpMvNge7KZWivhUF7JQxiQiyTCEvg6ARp526QdO0OSdcekHbvBcG5lbmjIiJq0phYEBE1IF1aCrRXLkN3NQzaq2EVoxFk+QShYlSj3yBI+w2EtHd/CLa25o6KiKhJYWJBRFQPYn4uNOdOQ3vhDHRXwiDmZps7JGoIMlnFSEa/QZD2HwhJt15cp0FEdBtMLIiIjCCKInTRkdCePQnt2ZPQxURxalNLYGMLaa++FaMZgcMgadfB3BEREVkcJhZERLchlpZAe/FsRTJx7jS3eyUIvn6QDR8N6fDRkHTryQP9iIjAxIKIqFa67ExoQ45CcyYUumvhjXcyNTV5gpsHpENHQjpiNKR9B3LKFBG1WEwsiIj+IRbkQxNyBJrgQxXJBN8eyVgOjpAGDods+ChIBw3jAnAialGYWBBRiyaWlkBzMgTaowehvXwe0GrNHRI1F9bWkA4dCdnY+yEdEAhBKjV3REREjYqJBRG1OKJSAe2Zk9AcOwjt2VOAWmXukKiZE9zcIb17LORj7oekQydzh0NE1CiYWBBRi6GNuArNvj+gCT0KlJWZOxxqoSSdukA2ZgJkd4+D4OJq7nCIiBoMEwsiatbE0hJoDu+HZt/v0MXdNHc4RP+SSiEdNBSysfdBOmQkBCsrc0dERFQvTCyIqFnSRl2vGJ04dghQlJs7HKK6tXKB/L4pkE2eBom7p7mjISK6I0wsiKjZEMtKoTlyAJp9f0B3M9rc4RAZTyqFdHgQ5FMfhLRXP3NHQ0RkFCYWRNTk6ZITod71AzRHDgDlXDtBzYOkY2fIpjwI2T3jIFhZmzscIqLbYmJBRE2WNuIq1D99C+3pUECnM3c4RI3DyRnyCQ9ANnk6JF7e5o6GiEgvJhZE1KSIogjt6VCof/oWuutXzB0OkelIpJAOHwX5w/Mg7dzN3NEQEdXAxIKImgRRrYbm8N9Q//IdxKQEc4dDZFbSQUMhn/M4pD16mzsUIqIqTCyIyKKJJSVQ7/0Nmt9/hpibbe5wiCyKpO8AWD3yOKT9Bpo7FCIiJhZEZJnEslKof/0B6l0/AKUl5g6HyKJJevSGfPZjkAUON3coRNSCMbEgIosiKhXQ/PkrVD99CxQWmDscoiZFEtAF8kceh3T4aAiCYO5wiKiFYWJBRBZB1Gig2fcH1N9v55QnonoS/DvB6onFkA0ZYe5QiKgFYWJBRGYlarXQHNkP9Y6tEDPSzB0OUbMi6dMfVguehrQLd5EiosbHxIKIzEIURWiPH4Xqmy3c5YmoMQkCpKPvgdXjSyBp3cbc0RBRM8bEgohMTnv1MlSffwhdTLS5QyFqOeRyyCZNh9WcxyE4OZs7GiJqhphYEJHJ6LIzodryCbTHDpk7FKKWy8ER8llzIZ82E4KVtbmjIaJmhIkFETU6UaWE+ufvoP7xG0ChMHc4RARA8PCC/PFFkI+5z9yhEFEzwcSCiBqVJvQYVP/7mAuziSyUpHc/WP/fi5C062DuUIioiWNiQUSNQpcYB+VnH0J36Zy5QyGi25HJIJ/+MOSPPgnBxsbc0RBRE8XEgogalFhSDNU3W6DZvQvQas0dDhEZQfD0htXS5yAbPtrcoRBRE8TEgogajCb0GFSfvA8xL9fcoRBRPUiHjoTVsuch8fIxdyhE1IQwsSCiehPzc6H85ANojx81dyhE1FBsbCB/5HHIH3wEgkxm7miIqAlgYkFE9aI+9BdUn38IFBeZOxQiagRCO39YP/cKpD16mzsUIrJwTCyI6I7osjKh+uhdaM+dNncoRNTYJBLIH3wE8nkLIFhZmTsaIrJQTCyIyCiiKEKz5zeotn4KlJWZOxwiMiGhfUdYr1wNaUAXc4dCRBaIiQURGUyXmgzlhnegu3LJ3KEQkbnIZJDPeRzyh+dBkHLtBRH9i4kFERlEvfc3qL74CFAqzR0KEVkASZfusF65GhK/9uYOhYgsBBMLIqqTWFwE5Ya3oT0RbO5QiMjSWFnD6vHFkE2fBUEQzB0NEZkZEwsi0kt75TKU766GmJ1p7lCIyIJJeveH9YuvQeLd2tyhEJEZMbEgohpErRbqb7dC9d12CKLO3OEQUVNg7wDrFasgG3mXuSMhIjNhYkFE1egy06F8+zXoIq6aOxQiaoJk02bCasHTPFSPqAViYkFEVTTBh6HY+A6EslJzh0JETZikaw9Yv/YOJF7e5g6FiEyIiQURQVQqoPzkA2j37zF3KETUXDg6wfqlNyALHG7uSIjIRJhYELVwusx0lL+2Aoi7ae5QiKi5EQTIZz4K+fxFEKRSc0dDRI2MiQVRC6YNu4CyN16CpKTY3KEQUTMm6d0P1q+uhcTN3dyhEFEjYmJB1EIpf/ke6i8/gaDjrk9EZAKtXGDzyluQ9h9k7kiIqJEwsSBqYUSVEiXvvgFJ6FFzh0JELY1ECqtFT0M+bZa5IyGiRsDEgqgF0Wamo3jl05CnJJk7FCJqwWQTJsPq6RchyOXmDoWIGhATC6IWQnnhLMrXvAR5eZm5QyEigqRnH9i8sQ5CKxdzh0JEDYSJBVELUPz9N8C2LyDhjzsRWRBJv0Gwff9Tc4dBRA2Ex2ISNWOiTof89W/C+vDf5g6FiKg6B0dYP/2CuaMgogbExIKomdIpFchZ+X+wvxZm7lCIiKqTSmHz2juQtG1n7kiIqAExsSBqhlS5uch7ZgEc01PMHQoRUQ1WS5+HdMBgc4dBRA1MYu4AiKhhFcdEI/+ph5lUEJFFkk15CPLJ080dBhE1AiYWRM1I5vFgKP/vKTgUFZo7FCKiGqQDh8Bq8TPmDoOIGgl3hSJqBkRRRMKP36LVts2w0mnNHQ4RUU1t28Huk68hODiYOxIiaiRcY0HUxOl0OsRu+gBe+36DFPycgIgsj9LKGg5vrGdSQdTMMbEgasK0Gg1uvLUKfiePmTsUIqJaaQUB0pffhFW79uYOhYgaGRMLoiZKWV6OmNdXwv/yWXOHQkSkl3LeQniMDDJ3GERkAkwsiJqgksJC3Fy1AgGRV8wdChGRXsWj74X3nPnmDoOITISLt4mamLyMDCS8/iK6xEWbOxQiIr2KOnWF9+fbIEhuswGlqAMgAIJgkriIqPFwu1miJiQ9Ph5xK/+PSQURWbQSV3d4bvj89kkFAMSvAiJnA9ryxg+MiBoVp0IRNRGxV68i793V6J6Vau5QiIj0UljboNWGLyC1t7995YwdQMrGir8rU4AevwJWXo0bIBE1Gk6FImoCos6fQ/H7b6F7Xpa5QyEi0ksrkUBYuxGOg4fevnJBKHD1fkBU/XvN2g/o+Qdg373RYiSixsOpUEQW7vqZ0yhZ9yaTCiKyeOqnnjYsqSiPAyJmVU8qAECZBITdBeQfbpwAiahRMbEgsmBXT51E6Qdr0a0g29yhEBHVqXjMRLg9+PDtK2oKgevTAE1u7eXaQuDaFCDj2waNj4gaHxMLIgskiiLCT4SiYNM69CjIMXc4RER1KurWC14vrtJbLooisjOToVKUApFzgLKouh9Q1AA3FgCpXzRwpETUmLjGgsjCiKKI8NDjyPpiE4Znc6E2EVm2Eg8vuH/9I6S2dnrrXLl4DMcO7MTEvnHo6HDauA7arwH8VtYzSiIyBY5YEFkQURRxOfgYkjd/gmFMKojIwils7eCycXOdSUVC7FUEH/we3T0ijE8qACBhdcWWtERk8ZhYEFkIURRx4cghxG7djKCsZPCoKCKyZBqpFNZvbYCVT2u9dXKyUnB47zZ42cbhns7hd95Z8gdAzNMAJ1kQWTQmFkQWQBRFnDt4ANHffI2xWUn8wSQiiyYC0C59Hg59++utU1pSiIN7voK2JAJT+lyARNDVr9P0LUD0E4Cord/jEFGj4f0LkZlVjFQcRsT3O3B/ZiJk/ESOiCxc6cTpcJ08XW+5WqXEkX3bkZ5wHg8PDoO1VNkwHWd9D0TMBnSq29clIpNjYkFkZldPnUT4DzsxOSMRVrp6fqJHRNTIivoMgNczL+ot1+l0OHn0V0ReCcHsoZFwsi5o2ABy/6zYrlZb1rCPS0T1xsSCyIyiLl7AqW+/waTUWNhoNeYOh4ioTsU+vvB696M664RfOIJzp/Zicv84+Dg00iYU+YcrTu3WFDbO4xPRHWFiQWQm8dev4ciO7RifHAMHjdrc4RAR1anc3hFuH26GxMpKb53YG5dx/NAPGNoxCd08bnNWRX0VnQaujAfUeY3bDxEZjIkFkRmk3IzB399sw+j4KHgoy80dDhFRndQyGWzf2Qi5u4feOpnpCTiybzvaOiVgePtLpgms5HLFKd3aEtP0R0R1YmJBZGKZSUn4a/s29I6JgH9ZsbnDISKqkw4CxGdfhn2P3nrrFBfl4eDurZAoojCx5wVIBBNuQlF8Drg2HdApTNcnEdWKiQWRCeVlZGDf9q/heiMC/Yo5fE9Elq98xmy4jJuot1ylVODQ3m3ITQvDrEGXYSU1w45NhSFAxCOAyLVqRObExILIRApzc7Fv+9dIi42FoldfpHn4mDskIqI6FQ0cCs9FT+st1+l0OH74R8RcD8XDQ67DwarIhNH9R94+IOoJQOTuekTmwsSCyATKSorx947tSIiMgG/nzoC1Dc72DcSN9gHmDo2IqFbFbdvDa+37dda5eOZvXDyzH9MGxsLLPt1EkdUh+yfgpv5EiIgal8zcARA1dxq1Gkd+/BExly/DNyAAMrm8okAQcL1zTxTbO6JvRBik/JSNanGxqATfpefgeH4xksqVcJXLMMjZAa93bIMAO9uqegsj4vBdek6N9gF2Nrg8VP/c+Fvty87HO/GpiCoth4dcjjmt3fFS+zaQSYSqOpEl5Xg6Kh5XS8oQYGeDD7q0Q6CzY7XH+SQpHd+k5eDM4J7V2lLTUeboDPeNX0Aik+utExN5HieO/IJRXRIR4BZjwuhuI30rIHUGOrxt7kiIWhwmFkSNSBRFnNj9J8JPhMK7fXvIra1r1Elq0w6ldvYIDDsLazVPk6XqNiak40xhCaZ6uqJnW1tkqtT4X0oWRpy7jqMDu6OHg11VXWuJgM+6+ldr7ySTGtTPwZwCzLoSg5EujvigcztcLynH+vg0ZKs02NS1PQBAK4qYfTUGrnIZ1nbyw185+ZgZHoMrw/pU9ZOlUuO9+DTs6NmJSUUTpZJbwWHdx5C5uOqtk54Si8N/fYOObokY0vayCaMzUMoGQOYM+Ok/yI+IGh4TC6JGdDkkGGf2/w1Xby/YOjjorZfr4o7gwCAMvXwaTqXcKYr+tdzPG9uc7GEl+Xfm6nQvNwSevYqNien4qkfHqusyQcAsH/c76ueVm8no6WCH3X27ViUEjjIpPkhIw5K2Xuhib4ubZQrElCkQObwP2tpYY7aPG9odv4xzhcW4160VAGBNbAqGt3LEPW7Od/6kyWx0ggDhxddh27mr3jpFBTk4uOcr2Ghu4L7uFyBYav6Y8DogcwJaLzJ3JEQtBtdYEDWShMgIBO/6FTb2dnBydbtt/TI7e4QMHo1MN08TREdNxZBWjtWSCgDoZGeDbva2iC6teQaKVhRRpNEa1UdkSTmiSssxv41HtVGGBb6eEAH8kVWxg5lCVzFdr5Ws4jMpO6kUthIBZdqK62FFpfgpIwfvBvgZ1T9ZjvLZj6PVXWP0lisVZTi092sUZoZj5sBLkEks/HDPm88Cmd+ZOwqiFoOJBVEjUSkU0GrU0Kg1EEXD9nTXyOU41X8YYv06NHJ01JSJoogslRpu8uqDzmVaHXyCL6J1yEW0DbmIZ6MSUGJAknGlpBQA0N/Rvtp1H2srtLG2QnhxGYCKhMZZJsU78alIKlfio8R0FGl16PtPuxduJGKhrxc62tk0xNMkEysaHgTP+Qv0lmu1WgQf/AE3I09i9tCrsJM3hUPpRCB6AZD7l7kDIWoRmFgQNZKAvv1w37z5sLK2RkrMDei0Bn6KLAi40rUPwrr1gc5i5xiQOf2UkYs0pRrTvf4dCfO2kuPZdj74ors/tvXoiPs8XPBlahamhkVDo6s7sc1QVnzq7G1dc6Gut7UcGcqKtT/2Uik+7NIeW1Oy0P1UOFbHJuPNjr7ws7XGzxk5iC1XYqV/mwZ8pmQqRf4B8HpN/2JnURRx/tQ+XD63Hw8OjoG7bZYJo6svLRA1Fyi9Zu5AiJo9rrEgaiSCIKDHkKFwdHXFgZ3fIik6Cm06dYLcquYC7trEt+2AEjsHDA4/ByuNhU83IJOJLi3Hc9GJCHR2wCO3rKdY06lttXoPeruhk50N1sSm4PesPDzorX86Xvk/U5z+O+UKAKwlEhTfMurxkLcbxrg5I6ZMgXY21vCylqNMq8VrN1OwuqMvHKQSvBOXiu/Tc2Avk+BV/zaY7Kl/ETCZX2krV3hs+BwSmf5bgqhrp3Hq6K+4t3siOrjEmTC6BqItAa5NA/qdAKw43ZSosXDEgqiR+XXugulLlqFjr95IuRGDshLDF2dnu3kiJHA0Suzsb1+Zmr1MpQozwm/ASSbFzl6dIL3NiNaytt6QAAjOr/vQMtt/EgqVruaWx0qdDrb/2d3JRS7DYGcHeP0zwvFBQjo8rGR41McdO9Ky8VVqFj7t5o+lbb0x71osYssURjxLMiWllTWcPvgMMicnvXVSEqNx9O9v0dUrEQN9r5gwugamTAIiZgI6pbkjIWq2mFgQmYCrtzceWLgIfUePRnZyCgpzap43oE+JvSOCA4OQ7XJnu/1Q81Co0WBq2A0UqjX4vW8X+Fhb3baNrVQCV7kMeWpNnfUqp0BVTom6VYZSDe86+kosV+KTpAys79wOEkHAL5l5eLyNB4JcnTC3tQcGOzvg18zc28ZKpqcVJJC+uhY27fWv6crPy8ShvV/BSYjFuK4XTBhdIyk6DdxYYu4oiJotJhZEJmLn4IgJcx/DyAemoKSwAFnJyQYv6lbLrXBywHDEt2nfuEGSRVJodXgwPAY3yxT4pW9ndHOwvX0jAMUaLXLVGrjL65712uufszAuFZdWu56uVCFVqUJvR7vamgEAXolJwn3urTCslWNVm1uTHh9rOdJqSVjI/FSPL4bz8FF6y8vLSnBoz1cozbmKGQMuQCoxbrcxi5X1HZD8gbmjIGqWmFgQmZBMLsfIB6ZgwtzHIJFKkXrzJnS1TD+pjSiRIKxHP1zp0guGpSPUHGhFEfOu3cS5whJ826tTjVOugYrEo7iW3Z/WxadCBDDmljMl1DodokvLqxZkA0B3Bzt0trPBttRsaG9Jdr9MyYIAYIqeNRIheUU4mFuItQH/ru/wtJLjxi3b4EaXKuBlpf/0ZjKP4rvHwf3huXrLtRoNgg98h6SYs5g99CpsZWUmjM4E4l8HcvaYOwqiZoeLt4lMTBAE9B4+Ak6urjj43U4kRUXCt1MAZFa3n9oCALHtOqHEzgGDrpyHXFv3FBdq+l6OScK+nALc594K+WoNfkyvPo1ulo87MlVqDD93DTO83NDZvmKr1yO5hTiQW4gxbs6Y6OFSVT9NqcaAM1fxiI87/tf93ykwbwe0xUPhMZh8ORozvFwRUVKO/6VkYl5rD3S1rzlCohVFrIxJxP+180Zbm383JJji6YrXbibD3UqOJIUS10vK8FUPbp9sSYo6d4P3y2v0louiiNPH/0D4hUOYPSQarjaGT91sOnRA9HzA5ijg0NvcwRA1G4Jo6FwMImpwOWmpOLDzW8Rdvwbv9v6wtTd8kbZTcSGGXD4De0Uz+ySRqhl/MRInCvQv+C+5ZzAK1BqsuJGI84UlSFeqoYWIDrY2mOnthv/z84b8lt2eEsuV6HEqvEZiAQB7svPxblwqosvK4S6X4xEfd7zs37pa+0pbUjKxISEdl4f2gp1UWnVdoxPxWmxyxa5QUglWdfDF7Ds8DZwaXombB9y//gnSOt5rroUdx/4/tuDeblHo69PMt2i1bvvPTlFe5o6EqFlgYkFkZqVFhTj84w+4euokXL194ORq+NacVkolhoSfgVtBXiNGSETNgcLGFg6bv4W1b1u9dZLirmP3z5vQxT0KYzqfM2F0ZuQYCPQ5CEgM2wqciPTjGgsiM7N3csZ9jz2OYRMnoSg3F9mpqQYv6lZZW+PEwBFI8tF/o0BEpJFIYfXGujqTitzsNBzauw1uVrG4O6AZ7ABlqOKzwI1F5o6CqFlgYkFkAeRWVgiaNgNjH5kDiDqkxcUavKhbJ5HiYq+BuN6pOxd1E1ENIgD1ov+D48BAvXXKSotwaM9XUBddx7R+FyEVDHv/aTayfgDStpg7CqImj4kFUSMoUtV9IFltJBIJ+gfdhclPLoSzmxuSo6OgURu+TeeNDl1wrs9gaCTS21cmohajZPwDcJ82U2+5Wq3C0b93IDX+PB4ODIO1tIUeaBj3IlDShA8AJLIATCyIGliRqggrQlbi08ufQ6Mzftemjr17Y+ripWjbuQuSbkRDUWb44uw0rzYIHTwS5dY2RvdLRM1PUY8+8F7xit5yURRx6tguXLt8DLOGRMLZOt+E0VkYnQKInANoS29fl4hqxcXbRA1Io9Pg9VNrcDWnYieV3u498dLgF+FoVfPsgdspzs/HwR++Q+S5s3Bv3QYOrVoZ3NZGUY4hYWfgUlRgdL9E1DyUePnA4+sfIanjg4bwC0dwcM/XmNArEj09I0wYnQXznA10/drcURA1SRyxIGpAW65srUoqAOBKzjWsCFmJlOJUox/L0cUFkx5/EoHjxiM/Kwu5GekGt1XY2CJ00EikerU2ul8iavrK7ezhsnFznUlF/M0rCDn4Awa2T2RScaus74GMb80dBVGTxBELogayL+5vbL5S++I/e7k9Xh78Ivp4GH8Qk06nw8WjR3D8j9+h1ajh498BgiAY1lgU0S02El3joo3ul4iaJrVUBvn7n8K+dz+9dbIzk/H79xvgIrmK6X1PQSLwVqAaiT3Q/xRg18XckRA1KRyxIGoAUXnR2HpV/9B5qboUq0+9ib/j9xv92BKJBIPuHYNJTzwJB2dnJEVFQasxcO2GICCyU3ec7zUQ2loOOSOi5kUHQPf0C3UmFSXFBTi4ZytQFokHel9gUlEbXSkQ+UjFugsiMhjvNIjuUGFxIa5GX0VeWR7Wnf8AGrHum32tqMXn4f/DlitboRW1RvfXuV9/TF20FK07dkBSdBRUCsN/4aX4tEXowJFQWPEAKKLmrOyBh+B6/xS95WqVEkf2bUdm0iXMCgyHlVRpuuCamtJrQOwKc0dB1KRwKhTRHShXlOPrn79GWFQYxIESZEqyjGrf37MfVg5aATu5ndF9F+bm4uB33yLq4gV4+raFvbOzwW1ty8sw9PJpOJcYvx0uEVm2on6D4fP+J3rLdTodQg58j7MnfsO84WHwcUgzYXRNWLfvAI/p5o6CqElgYkFkJJ1Oh5/3/YyDoQeBAAmyPXLv6HHaOrbF60Negbe9t9FtFWVlCN71Ky4FH4VjKxe4eHkZ3Faq0WDQlfPwyckwul8iskzFrdvC86sfIJHL9da5dPYADu/dhsn9ItHVneuuDCZ1BvqfAWz9zR0JkcXjVCgiIwWfDcbR08fg0M4J2e53llQAQHJxMp4PWYnrOcbvxmJjZ4cxsx/BXTMegqK8DOkJ8TD0MwKtTIYz/YYgpl0no/slIstT5uAEtw8315lU3Iy6iOOHf8KwgCQmFcbSFgJRjwK3me5KREwsiIxyNfoq/jz4J2ycbJDikwYYuDmTPkWqIqw6tRqHE48a3VYqlWLI+AmYOP8J2NjZI/lGNLRaA9duCAKudemFS937QWfoDlNEZHHUMjns3v0Qcjd3vXUy0uJxZN92tHNOwLB2l00YXTNSfAFI/sDcURBZPCYWRAbKzMnEz/t+gVKjQm6HfKgl6gZ5XI1Og02XP8H26zugE3VGtRUEAd0GDcbUxUvg1dYPSVGRUCkNX4yZ6NseJwcMh6qOTzqJyDLpIEB87hXYd+upt05RYS4O7vkKcnU0JvbkDlD1kvguUBZl7iiILBoTCyIDKJQK/LT3Z6RkpEDsKqDIqrjB+9gV8zveObsOCo3x2xv6duyEaUuWIaBvP6TejEFZseHx5bh6IDgwCMV2Dkb3S0TmUz7zUbiMvU9vuVJZjsN7tyEvLQwPDQqDXKIyYXTNkKgEohcCRn4ARNSSMLEgug1RFLHv6D6ERVyGa4Ab0uwMPwHbWGczzmFl6CvILssxuq2LpyceeGoh+t91N7JTU1CQnW1w21I7B4QEjkamm6fR/RKR6RUFjoDnU0v1lmu1Whw/9CNiIk5g9tBrcJBzJ7gGUXwWSP3M3FEQWSzuCkV0G+fCz2HbL9vh0MoRcf4JUEkb/1M/F2sXrBryEjq7dDa6rVajwem/9+HUvr2QyuTwbNvW4JO6BZ0OvaOvoENyvNH9EpFpFPn5w2vLt5DIap/CKIoizp/ci2P7d2L6wOvo5HrTxBE2cxI7YMAFwLaDuSMhsjgcsSCqQ3J6Mn478DukUilyfHNNklQAQL4yHy+HvobQlBNGt5XKZBg+cTImzH0MMis5UmJioDNwUbcokSC8W1+Ed+3NRd1EFqjMqRU8PtysN6kAgBsR53Dy2K8I6pbIpKIx6MqAmCXmjoLIIjGxINKjtKwUP+75Cdm5WbDuYIMcmzvfWvZOqHQqrL+wAd9H/mh0W0EQ0GvYcExduBjurVsjKSoKapXhi7rj/DridL+hUNVx80JEpqWSW8Fh/SeQObfSWyct5SaO/LUDndwSMdg3zGSxtTgFwUD6VnNHQWRxmFgQ1UKn0+GPg38gIiYCbfx9EetovqlBP0T/hPXnN0ClNX60xK9LV0xbshT+PXsi5UYMyktKDG6b5e6F44NHocTW3uh+iahhaQUBkpfWwLaT/umRhfnZOLh7K+zEGEzofgEcdGxkca8AyhRzR0FkUZhYENXi5IWTOH7uONp4t0GcawK0EgPPh2gkoakn8PKJVchX5Bvd1s3bB1MXLUbfUaORlZyEwlzDR16KHZwQEjgaOS5uRvdLRA1H+ehTcB59t95yRXkpDu79GsXZV/DQgIuQSXiYW6PTFgExy80dBZFFYWJB9B9JacnYfWQPbGxsUeRVjEIry9hN5UZ+DJ4LeRFxBcaPntg5OmHCvMcwfNIDKCnIR1ZKisEndausrHFiwAgktvYzul8iqr+ikffAY+4Tesu1Gg2CD3yHhOhTmD3kGuzkpSaMroXL+xvI/MHcURBZDCYWRLdQKBX4bf8u5BXkolWbVkiwTzJ3SNXklOdgZegrOJN+1ui2Mrkco6dOw7g5cyERBKTG3oROZ9h+7KJEgks9B+BaQA9wGzki0ynq2AVeq97SWy6KIs6d3Iuw84cwY/ANuNlmmTA6AgDErgBU/LoTAUwsiKo5cvIIrkRdRTvf9oh2ugnRAk+pVWgVeOfsOvx64zej2wqCgL4jR+GBBQvRysMDSVFR0KgMX7sR498ZZ/oOgVoqM7pvIjJOqYsbPDZ8BolUqrdO5NVTOBW8C2N7JcK/FbeJNgtNLhD/qrmjILIIPMeC6B9RsdH4YufnsLKyhrKtCvEOieYO6bbubnsXlvVbDLnE+N2bslNTsP/bHUiIjIBPe3/Y2Bu+SNupuBBDL5+GnaLc6H6J6PaU1jaw+3w7bNr5662TkhiFP3/ahI6tIjC+q/GjmNSQBKDfScCxv7kDITIrjlgQASguKcbvB35DubIcDh6OSLRPNndIBjmafAyrTq5GodL4dSAebXwxdfFS9Bw6DBmJCSjON3xheJGjM4IDg5Dn7GJ0v0RUN61EAtlr79SZVOTnZuDgnq/gLLmJMZ0vmDA6qp1YMSWKqIVjYkEtniiK2HdsH27Ex6C9rz9uOsVBJxi29sASRORG4vmQF5FUZHwy5ODsjInzn8DQ+yaiIDsbOWlpBi/qVlrbIHTgSCR7+xrdLxHpp3piGZyGDNdbXl5WggO7t0KRfx0z+l+E1My71tE/ik4B2b+aOwois2JiQS3e5YgwhJw7Dh9PH+Q55KPAqsDcIRktsywTLxx/CRczLxndVm5tjbtmPIhxj8yBTqtFWlycwYu6dVIpLvQehIiO3biom6gBFN97H9xnPqK3XKNR4+jf3yIl7hweDgyHjazMhNHRbcW9AugU5o6CyGyYWFCLlpOfgz8O/g4BAhxaOSDOoekufizTlOHNM29jd+xeo9tKJBL0v+tuTH5yAZxcXJAcHQWNWm1w++iOXXG+9yBoJPoXmRJR3Yq69oTXytf1louiiDMhf+DapSOYGRgNFxvDz6QhE1EmASkfmTsKIrNhYkEtlk6nw57De5CcngK/Nn6IdYiHuokfKqUTdfjy6lf4PGwztDrjp0d06tMH05Ysg2+nACTfiIay3PDF2anevggdNBLl1jZG90vU0pW4e8Jz/ScQ6jgu+9rlEJwJ/QPj+ySgrZPlby7RYiV/ACjTzR0FkVkwsaAWKywiDGfDzsLX2xdF1sXIss02d0gN5u+EA3jj9FsoURl/UJaXnx+mLVmG7oMDkR4fh5KCAoPbFji7IDgwCAWOzkb3S9RSKWzt4LJxM6R2dnrrJMZdQ/CB79C3bTL6eF8zYXRkNG0JkKB/5ImoOWNiQS1SUUkR9h7dC0EigYODA2IcY80dUoMLyw7HiuMrkVZi/Cdnji4umPj4kxg8dhzyMjORl5FhcFuFjS2ODx6FNE8fo/slamk0Eims33wfVq3b6K2Tm52KQ3u+hqdNPO7uxB2gmoTMnUCx8WveiJo6JhbU4oiiiAPHDyA+OQF+Pn5ItkuFQtY8F9ullqRiRciLuJJ91ei21ra2uGfmw7hn5iyolEqkxccZvGOUVirD2T6BiPbvbHS/RC2FCECz+Fk49Buot05pSSEO7N4KTXEEpvS9AEkT2rGuZeP2s9QyMbGgFudG/A0cPxcKL3cvaK20SLZLMXdIjapYXYLVp97EgYSDRreVSqUIHDsOk554EnYOjkiKjoZWY+A6FEFAREAPXOg5AFqBbzVE/1Vy/1S4TX1Qb7larcLRv3cgPf4CHg4Mh7W0eX4A0mxx+1lqgfjbnlqUckU5dh/eA4WyHG4uboi3T4RO0vw/AdSIGnwa9gW+vPo1dKLxz7dL/wGYtngpWvu3R1J0NFQKw29wklv74cTAEVDKrYzul6i5KurVH97PvqS3XBRFnDz2K66HHcPDQyPhbG34AZZkQeJeAXRKc0dBZDJMLKhFOX7uOCJjI9GuTXsUyYqRZdN8FmwbYnfsHrx15h2UqQ3f7alS6w4dMG3xMnTp3x+psTdRWmT4ad95Lm4IDgxCkb2j0f0SNTfF3q3h9d5HddYJv3AE50/sxaR+8Wjt2LxHVZs1ZRKQ/rW5oyAyGSYW1GIkpyfjYOghtHJsBWsra8Q5xgP6d3Zsti5kXsSLoS8hszTL6LbO7u6Y/NRCDLx3DHLSUpGfZfhjlNnZIyRwNDLcvYzul6i5KLdzgOvGzZBYW+utE3cjDCGHfsDgDkno4RlpwuioUSR/wFELajGYWFCLoNFosOfIXhQU5cPbwxtZ1tkokhebOyyzSSxKwvMhLyAyN8rotjZ2dhj78CO4a8ZDUJSWIiMxweBF3RqZHKf7DcVNv45G90vU1KmlMti+sxFWnvqT6+yMJBzetw1tHBIw0v+iCaOjRqNKBTK2mzsKIpNgYkEtwuWIywiPCENbHz/oBB3iHBLMHZLZFaqK8OrJ13EsOdjotlKZDEMn3If7HpsPaxtbJMfcgFZr4IF8goCrXXvjcve+0NVxGBhRc6IDoHtmJex79tFbp6QoHwd2b4VQHo3Jvc5DIhiWsFMTkPw+oFOZOwqiRsfEgpq90vIy7D9+ABKpFPZ29ki2T4VKyjd4AFDr1Nh4cRN2ROw0eNShkiAI6BE4BFMXL4GXb1skRUdBrTR8uD/B1x8n+w+HSiY3NmyiJqds6iy4Tpist1ylVODwvu3ISb2EWYMvw4rvUc2LMgXI+MbcURA1OiYW1OydOB+K+KQ4tPVpC6VEiRS7VHOHZHF+ubEL755bD4XG+HnAvp0CMHXxUgT07oOUmzEoKzF8ilmOmwdCAkejxM7e6H6Jmoqi/oHwWvqs3nKdTofQIz8j+looZg2JgKNVoQmjI5NJXs9RC2r2mFhQs5aVk4Wjp47C2akV5DI5kuxSoOMBU7U6nX4GL4W+gtzyXKPbunp54YEFi9A/6C5kp6SgMCfH4LYl9o4IDgxClquH0f0SWbriNn7wentDnXUunz2Ai6f/wtSBN+Ftn2aiyMjklMlA5g5zR0HUqJhYULMliiIOnTiErLxseLt7o1yiQIZtprnDsmixhXF4LuRFxOTfNLqtrYMDxs2Zi1FTpqK0sBBZyckGT69Sy61wqv8wxPu2N7pfIktV5ugM94/+B4lc/3S/mMgLCD3yM0Z0TkRntxsmjI7MImk9oFObOwqiRsPEgpqtmIQYnAk7Cx8PH0gkEiTZJ0PkYsjbylPk4aUTr+Jk6imj28rkcoyY9AAmzH0MUpkUqTdjoNMZNkIkSiQI694PV7r04qJuavJUMjns39sEmYur3joZqXE48td2+LskYqjfZRNGR2ajTAIyvzV3FESNhokFNUsajQb7Qw6gXFEGF2cXlEnLkGlj/LkNLZVKq8K68x/gp+hfjG4rCAJ6DR+OKQsXw9XLB0lRkVCrDJ9XHNuuE870HQK1TGZ030SWQCcIEF54HXZduumtU1SQg4N7tsJKHYP7epwHc+kWJHk9IGrMHQVRo2BiQc3SxWsXcS36Gtq29gMAJNont8jD8OpDhIidkd9jw4UPodYaP3Tfrms3TFu6FP7deyAl5gbKS0sNbpvp4Y2QwaNRamtndL9E5lY+ax5a3TNWb7lSWY7D+7YjPyMcMwddglzCqTEtiiIByNxp7iiIGgUTC2p2SsvLcDD0IGQyGexs7FAqLUW2teGLiam64JTjePnEKuQrCoxu6+7TGlMXL0Hv4SOQmZiIojzDF4YXOzghODAIOa3cjO6XyFyKho6C5xOL9ZZrtVqEHPwBNyNOYPaQa7BvwQd1tmhJ6zhqQc0SEwtqds6GnUF8cgJ8fXwBAAkOSRytqKfo/Bt4PuRFxBcmGN3WztEJ9z32OIZPmoSivDxkp6YYvKhbZWWNEwNHIMmnrdH9EplaUfuO8Fr9rt5yURRx4dQ+XD67H9MHx8DDjptJtFiKeCDnD3NHQdTgmFhQs1JcUoxjp4/Bwd4BcpkcxbJi5FrnmTusZiG7PBsrQ1/GufTzRreVW1khaNoMjJ8zFxCB1NibRi3qvthrIK4HdAeX3pOlKnV2gcfGzZDUsTYo+vpZnDy2C3d3T0JHl1gTRkcWKfVTc0dA1OCYWFCzcvryaaRmpMLH0wcAkGCfbOaImpdyjQJvn30Pv8X8YXRbQRDQd9RoPLBgIVq5eyA5OgoateFzy2/4d8HZPoHQSKVG903UmJRW1nB8/1PInJz01klLjsHRv3agi2ciBvmGmS44slxFZ4Ai4z+oIbJkTCyo2SgoKsCxM8FwcnCGTCpDiawU+db55g6r2dFBh23Xv8HHlz6FRmf8HOEOPXth2pKlaNu5C5JvRENRVmZw23Sv1jg+aBTKrG2N7peoMWgFCaQvvwnbDp301inIz8LBPV/BXojBuK4XTBgdWTyOWlAzw8SCmo1Tl04hIzsD3p7eAIBkuxQzR9S8HUo6gtdOvoEiVZHRbT1922Lq4qXoOWQoMhLiUZxveAJY6NQKwUOCkOfkYnS/RA1NNW8BnEcG6S1XlJfi0O6vUJx9BQ8OuASZhAt26RY5vwFKnrZOzQcTC2oWcgtyEXLmOFycXCCVSKGQKJBjbfgORHRnruVex4qQlUguNj6Jc2zVChMffxJDJ9yPgpxs5KQb/stVaW2D0EEjkeLVxuh+iRpKcdAYuM+Zr7dcq9Hg2P6dSIg5g0eGXIWdzPAtl6mFENVA2v/MHQVRg2FiQc3CyQsnkZWXBS93LwBAil0aT9k2kfTSDLxw/CVczgozuq3c2hp3PfgQxsyaDZ1ag7S4OIN3jNJJpTjfexAiO3Q1ul+i+ioK6AqvV97UWy6KIs6e2I3wC4fwYOANuNpmmzA6alIyvgJ0SnNHQdQgmFhQk5edm43j50Lh1soNEokEakGNDFtu42hKpepSrDm9Fvvi/jK6rUQiwcB77sXEJ5+Cg7MzkqKioNUYOF1EEBDVqRvO9xoIrYRvZ2QaJa7u8Pzgcwh1vOYiwk/gdPBvGNsrEe2d400YHTU56hwge5e5oyBqEPxNTE1e6PlQ5ObnwMPVAwCQZpsOnWDYVqbUcLSiFpuvfInN4VugFbVGt+/ctx+mLVmG1h07ICk6CsrycoPbpvi0RejAkVBYWRvdL5ExFNY2aLXhC0jt7fXWSU6IxLH9O9GzTRL6t75qwuioyUrfYu4IiBoEEwtq0nLyc3Dq0mm4ubhDIpFACy3S7DLMHVaLti/+b6w5vRalauPnk3u3a4fpS5aj26BBSIuLRUlhocFt81u5InhIEAocnY3ul8gQWokEVqvfg3VbP7118nLScXDPV3CVx+LegIsmjI6atKIzQMkVc0dBVG9MLKhJOx9+Hrn5uVWjFZm2WVBLDD8bgRrH5awwvHD8JaSXphvd1snVFZOeWIDBY8chLyMDeZmGT2srt7HD8UGjkO7hbXS/RLejfuppOA4eqre8rLQYB/dshargOqb1uwipxPiRO2rBuIibmgEmFtRkFZcU48SFk3B2coZEIoEIESm23LbPUiQXp+D5kJW4lnPd6LbWtra4d9Zs3P3gQ1ApypEeH2/wom6tTIYzfYfgRvsAo/sl0qd47ES4Pfiw3nKNRo2j+3cgNe48Hh4SDhuZ4VP5iAAAWT8CGuO37yayJEwsqMm6dP0S0rPSq3aCyrPKh0KmMHNUdKtiVTFeO/UGDiUeNrqtVCpF4LjxmDj/Cdg62CPpRrRRi7qvd+6Jiz36QyvwbY7qp6h7b3i9sEpvuSiKOBX8G65dPIqZgVFoZZ1nwuio2dCVViQXRE0Yf+NSk6RQKnD83HHY2dpBJpUBANJtubbCEml0Gnx8+TN8fW07dKJxi+oFQUDXgYMwddFS+Pi1Q1J0FFQKw5PHpDbtcHLAcCjlVsaGTQQAKPHwhuf6jyEIgt46Vy8F42zon7i/XwJ8nZJMGB01O1nfmzsConphYkFNUnhkOBJTk+Dj4QMAUEgUyLMy/PRmMr3fb/6Jt8++h3KN8VNE2nTsiGlLlqFzv/5Ijb2JsmLDpwvkurojODAIRfaORvdLLZvC1g4uG7+A1MZWb52E2KsIPvg9BrRLRi8v46f9EVVTdAYo5/bE1HQxsaAmR6PR4Pi5UMhkMlhZVXwSnW6bCej/QJEsxLmM83jx+CvIKjP+sLBWHh544KmFGHj3PchJTUVBtuGPUWZnj5DBo5Hp5ml0v9QyaaRSWL+1AVY+rfXWyc5MxuG92+BlG4egjtwBihoIp0NRE8bEgpqciJsRuJl4Ez6eFaMVOuiQYcMD8ZqKhKIEPB/yIqLyoo1ua2Nvj7GPPIpR06ajrLgYmUmJBi/q1sjlONV/GGLbdjC6X2pZRADaZSvg0Le/3jolxQU4uOcraEsiMKXPBUh4dg41FCYW1IQxsaAmRRRFnDh/AjqdFnY2dgCAHOtcqKXcYrYpKVAW4NUTryM4+bjRbaUyGYbfPwn3PzYfcitrpNyMgU5r4LaegoAr3fogrGsf6OqYM08tW+mkGXCdNE1vuVqlxNG/vkFG0kU8PDgM1lKlCaOjZq88Gii+bO4oiO4IEwtqUhJTExF5MxLe/6ytALhou6lS6VTYcPFD7Iz83uBRh0qCIKDHkKGYsmgx3H1aIyk6CmqV4Td38X4dcKr/MKhkcmPDpmauqM8AeP3fC3rLdTodTh79FZFXQjB7SAScrAtMFxy1HBy1oCaKiQU1KZeuXUJpeRkc/1mIWyotQ6EV9/1uyn6K/gXrzn8Apdb4T339OnfB9CXL0LFXb6TExKC8pMTgttlunggJHI0SO3uj+6XmqdjHF17vflRnnfDzh3Hu1F5M7h8HH4dU0wRGLU/2L4CRu+gRWQImFtRkFJcU41z4ebg4u1Rt/cjRiubhZNopvBy6CnkK4/f/d/X2xgMLF6HvyNHISk5GYW6OwW1L7B0RHBiEbBd3o/ul5qXc3hFuH26GxEr/1sSx0Zdw/PCPGNoxCd08okwYHbU4qjSg4Ji5oyAyGhMLajLCo64gOy8b7q4VN4E66JBlY/zuQmSZYgpu4rngFxFbEGd0WzsHR0yY9xhGPjAFJQUFyEpJNnh6lVpuhZMDhiOhTTuj+6XmQS2Twfa9jyB399BbJzM9AUf++gZtnRIwvP0lE0ZHLRanQ1ETxMSCmgStVoszl89ALpdXHYiXZ5UPjcTAk5ipSchV5GJl6Cs4nXbG6LYyuRwjH5iCCXMfg0QiQWrsTeh0hk0lECUSXO7RH1c794Rxqz2oqdNBgPjsq7Dv1lNvneKiPBzcvRVSRRQm9rwAicBXCZlAzp+AzvADQYksARMLahJik2IRlxQLb3fvqmscrWielFol3j23Hr/c2GV0W0EQ0Hv4CExZuBguHp5IioqERqUyuP3N9gE4028I1P8kr9T8lc+YDZdx9+ktVykVOLR3G3LTwjBz0GVYSQ1/PRHVi7YIyN1n7iiIjMLEgpqEi9cuQqlSwv6fhbYaQYNca+Pn41PTIELEjoid2HhxE9Ra47cSbt+tO6YvXYb23XogOeYGFKWlBrfN8PDB8cGjUPrPdsbUfBUNGgrPRU/rLdfpdDh++EfEXA/Fw0Ouw4EbRZCpcToUNTFMLMji5RXk4eLVS3Bt5VZ1Lds6ByKnIzR7x5KD8erJ11GoLDS6rXvrNpi6eDF6DxuBjMREFOUbnogWOTojODAIuc6uRvdLTUNx2/bweuv9OutcPPM3Lp7Zj2mDYuFln26iyIhukXcA0Bq+2x2RuTGxIIsXHhmOvMI8uN+ycw+nQbUckXlReC7kRSQWJRrd1t7JGffNfxzDJk5EUU4uslNTDV7UrbK2xolBI5Dk09bofsmylTk6w33jF5DUcY7JjYhzOHHkF4zqkogA1xgTRkd0C1EF5B81dxREBmNiQRZNq9XibNhZ2FrbQiKpeLkqJEoUyjkloSXJKsvCC8dfxoWMi0a3lVtZIWjaDIx9ZA4g6pAWF2vwom6dRIqLvQbieqfuXNTdTKjkVnBY/wlkLvpHo9JTYnHk7x3o6JaIIW15AjKZWd7f5o6AyGBMLMiixafEIyk9GR6u/24DmWWTDQhmDIrMolxTjrfOvoM/bu42uq1EIkH/oLsw+cmFcHZzQ3J0FDRqw9du3OjQBed6D4ZGIjW6b7IcWkGAZOUbsA3oordOUUEODu75CjaaG7iv+wUIfK8hc8s7aO4IiAzGxIIs2vUb16FQKKoWbQOcBtWS6UQdvrq2DZ+GfQGNzvithjv27o2pi5eibecuSL4RDWV5ucFt07zbIHTwSJRb2xjdL1kGxezH4Rx0j95ypaIMh/Z+jcLMcMwceAkyifEbBxA1OFUqUBJu7iiIDMLEgiyWUqXExWsX4eTgVHWtRFqKMlmZGaMiS3Ag4SBWn1qDEpXxixq92vph6qIl6B44BOnxcSgpKDC4bYGTC4IDg5Dv2Mrofsm8ioYHwXP+Ar3lWq0WwQe/x83Ik5g99Crs5FwwSxYkb7+5IyAyCBMLslgxCTHIyM6sOmkbAHJscs0YEVmSKznX8HzIi0gtSTW6raOLCyY9/iQCx41HflYWcjMM3/FHYWOL0MEjkerZ2uh+yTyK/APg9fo7estFUcT5k3tx+dwBPDg4Bu62WSaMjsgAXGdBTQQTC7JYV6KuQqvVwtrKuuparhXPrqB/pZWmY0XISwjPvmJ0WysbG9wz82HcO2sWNCo10uLjDN4xSiuV4VyfwYjy1z9XnyxDaStXeGz8HBKp/vUxUddO49SxXbi3eyI6uMSZMDoiAxWdB9T8/UeWj4kFWaTikmKER4TDxdml6ppCokCp3PCDzqhlKFGXYPWpN/F3/AGj20okEgy6dywmPfEkHJyckBQdDa3GwLUbgoDIgO4432sgtBK+lVoipZU1nD74DDJHJ711UhKjcfTvb9HVOxEDfY1PUIlMQwvkcxE3WT7+NiSLFBUXhdyCHLjdcigeT9omfbSiFp+Hb8aXV76CVtQa3b5zv/6YumgpWvv7Iyk6CiqFwuC2KT5tcWLgCChuGVkj89MKEkhfXQub9h301snPy8TBPV/BSYjFuC4XTBgd0R3I5XQosnxMLMgihUWEQyKRQiaTVV1jYkG3sztuL9468w7K1MYv8Pfx98e0JcvQdcBApMbeRGmh4ad957VyQ3BgEAod9H8yTqalenwxnIeP0lteXlaCQ3u+QlneNcwYcAFSifEJKZFJ5R8GRMPO4CEyFyYWZHGy83IQeTOy2miFWtDwUDwyyMXMS3jh+EvIKM00uq2zmxsmPbkAg+4di9yMdORnGv4Y5bZ2OD54FNLdvY3ulxpW8d3j4f7wXL3lWo0Gx/bvRFLMWcwecgW23GmOmgJNLlB01txRENWJiQVZnJiEGygoLkArp1ZV1/Ks8iAKPPuYDJNUnIznQ17E9dwIo9va2NlhzOxHcNeMh6AoL0NGQoLBi7o1MjnO9BuCmHadjO6XGkZR5+7wevkNveWiKOL08T9w5eJhPBQYDVebHNMFR1Rf3HaWLBwTC7I412MiIJVIIbllQSynQZGxilRFWHVyNY4kHTW6rVQqxZDxEzBx/hOwtrND8o1oaLUGTpURBFzr0guXuveDjsc2m1SJmyc8P/gMQh1f9+vhoThz/A+M750AP+cE0wVH1BAKjpk7AqI6MbEgi1JUUoQbcdFwdXatuqaDDvlW+WaMipoqjU6Djy59gu3Xdxg86lBJEAR0GzQYUxcvgVdbPyRFRUKlVBrcPtG3PU4OGA6VXG5s2HQHFDa2aLXhc0jt7PTWSYq7jmP7d6KPbxL6+lwzYXREDaTkMqAtN3cURHoxsSCLcjMxFgWF1adBFVgVQivhgjW6c7tifsc759ZBoTF8t6dKvh07YdqSZQjo2w+pN2NQVlxscNscVw8EBwah2M7B6H7JcBqJFFZvrIe1b1u9dXKz03Bo7za4W8Xh7gDuAEVNlKgGivn6JcvFxIIsSnRcFESI1XaDKpAbvjsPkT5n0s9iZegryCk3fk69i6cnHnhqIfrfdTeyU1NQkJ1tcNtSOweEBI5GlquH0f3S7YkA1Iv+D44DB+utU1ZahEN7voK66Dqm9bsAqcAPKqgJKzpj7giI9GJiQRZDoVTgavQ1ODu2qna9wKrALPFQ8xNXGI/nQ17EjfwYo9vaOjhg/Jy5GD11GsqKi5CZlGTw9Cq13Aqn+g9DnK+/0f1S3UomPAD3aTP1lqvVKhz9awdS48/j4cAwWEuNH7UisihFp80dAZFeTCzIYsQnxyM3L6faadtqQY0SGU/bpoaTp8jHyydWITTlhNFtpTIZhk+cjPvmzYdMLkdKTAx0Bi7qFiUShHfvi/Cuvbmou4EU9ewL7+df0VsuiiJOHduFa2HHMGtIJJytuVaLmgFuOUsWjIkFWYwb8Teg1mhgfcsJxgVWhQDvwaiBqbQqvH9hI36I+snotoIgoOfQYZi6aDHcW7dGUnQU1CqVwe3j/DridL+hUMm4qLs+Srx84LVuU511rlw8inMn92Biv3i0cUw2UWREjUyTC5TdMHcURLViYkEWQaPRIDwyHI72jtWuc30FNRYRIr6P+hHvn98AldbwxKCSX5eumLZkKfx79ERKzA2Ul5QY3DbL3QvHB49Cia290f0SUG5nD5eNmyGxttFbJz4mHCEHf8Cg9sno6Wn8eSZEFq3olLkjIKoVEwuyCCkZKcjMyao2DQrg+gpqfMdTT+CVE68hX2H8NBk3bx9MXbQYfUeORlZyEgpzcw1uW+zghJDA0ci55YR5uj21VAbbtRtg5aX/hPPsjCQc2rsNPvbxGNWBO+hQM8QF3GShmFiQRUhMTUS5ohx2tv/uQa+QKFEu40JLanzR+TfwXMiLiC+MN7qtnaMTJsx7DMMnPYCS/Dxkp6QYvKhbZWWNEwNHILG1n9H9tkQ6ALqnX4R9735665QUF+Dg3q+Askg80PsCJIJx55cQNQmFXMBNlomJBVmEGwkxkMlk1U7M5WgFmVJOeQ5ePP4KzqQbvzBSJpdj9NRpGPfoPAiCgNTYm9DpDNvSVJRIcKnnAFwL6AHeAtetbMpDcL3/Ab3lapUSh/dtQ2biRcwKDIeV1PADDYmalPIbgDrP3FEQ1cDEgsyuXFGO2IRYODs6V7teYMX1FWRaCq0C755dj10xvxvdVhAE9B05Cg8sWIhWHh5Iio6CRq02uH2Mf2ec7RsIjVRqdN8tQVG/wfBa9rzecp1OhxNHfkH01VA8PDQCTvxggpo1kdOhyCIxsSCzS0pLQkFRfo3EolBeZKaIqCXTQYft13fgo0ufQK0zPDGo5N+jJ6YvWYZ2Xboi+UY0FGVlBrdN92yNkMGjUWZja3S/zVlxGz94vbOxzjph5w/h/Kl9eGBALHwc0kwUGZEZ8TwLskBMLMjsktKSodaoq20zqxJUUHIaA5nRkaSjeO3kGyhUGp/gerTxxdTFS9Fz6DBkJMSjON/wheFFjs4IDgxC3n82Mmipyhyc4LbxC0jk+rfnvRl1EccP/4RhAYno6h5twuiIzKj4vLkjIKqBiQWZXVRsFORyq2rXiuXFZoqG6F/XcyOwIuRFJBUZfwaCg7MzJs5/AkPvm4iC7GzkpKUZvKhbaW2D0IEjkezta3S/zYlaJofdux9C7uaut05GWjyO7NuOds4JGNbusgmjIzKz0khzR0BUAxMLMquikiIkpiailWOr6tflhp8JQNSYMsoy8cLxl3Ap0/ibVrm1Ne6a8SDGPTIHOq0W6fFxBi/q1kmluNB7ECI7dm2Ri7p1ECA+vwr23XrqrVNUmIuDe76CXH0DE3tyByhqYdSZgNrwLa6JTIGJBZlVUloSCosL4eToVO06RyzIkpRpyrDmzFrsid1ndFuJRIL+d92NyU8ugGOrVkg2clF3VMduON97EDSSlrWou3zmo3AZM15vuVJZjsN7tyEvLQwPDboMucT4Qw6JmrxSHv5IloWJBZlVQkoitDot5LJ/50+LEFEs44gFWRadqMOWq1vxefj/oNVpjW7fqU8fTFuyHL6dApB8IxrK8nKD26Z6++LEoBFQ3LIOqTkrChwBz6eW6i3XarU4fuhHxEScwOyh1+DAjR6opSrjdCiyLEwsyKyi46Jha119B5wyaRm0EuNv3IhM4e/4/Xjj9FsoUZUa3dbLzw/TlixD98GBSI+PQ0mh4Vsq5zu74tiQu1Dwn93Tmptivw7wWvOe3nJRFHHx9F+4dGY/pg+6CU+7DBNGR2RhyjhiQZaFiQWZTUlpCdKz0uFo71jtOtdXkKULyw7HiuMrkVaSbnRbRxcXTHz8SQweOw55GRnIyzT8xlhhY4vjg0YhzdPH6H6bgjLnVnD/8AtIZPp3gLoRcQ4nj/2KoG6J6OR604TREVkgToUiC8PEgswmLSsNJWUlcLB3qHad6yuoKUgtScWKkBdxNfua0W2tbW1xz8yHcc/MWVAplEiLjzN4xyitTIazfQIR7d/Z6H4tmUpuBYf1n0Lm3EpvnbSUmzjy1zfo5J6Ewb5hJouNyGJxKhRZGCYWZDYZ2RlQq6ufXwEAxTImFtQ0FKtL8PqpNTiQcMjotlKpFIFjx2HSE0/CzsERydHR0Go0hjUWBEQE9MDFHv2hFZr+27hWECB5+U3YdgzQW6cwPxsHd2+FnXgTE7qdhyCYMEAiS6XOBtQ55o6CqErT/41ETVZyWjKE/9wd6KBDmczwRa1E5qYRNfg07HN8dXUbdKJhW8neqkv/AZi2eCl8/NsjKToaKoXC4LZJbdrh5MDhUP7nHJimRvnoU3AedZfeckV5KQ7u/RrF2Vfw0ICLkEkMTMCIWgJOhyILwsSCzEKn0+FmYiwc7KpPgyqXlkPkXvTUBP0RuxtvnXkHZWrjE+PWHTpg2uJl6NK/P1Jjb6K0yPBdjnJd3BEcGISi/6xVaiqKRt4Dj7lP6C3XajQIPvAdEqJPYfaQa7CTG79onqhZ43QosiBMLMgscvJykF+YV2PhdqmszEwREdXfhcyLWBn6MrLKsoxu6+zujslPLcTAe8cgJy0V+VmGP0aZnT1CAkcjw93L6H7NqahjF3itektvuSiKOHdyL8IvHMKMwTfgZmv815Wo2eOIBVkQJhZkFunZ6SgtK4W9nX2160wsqKlLKErE8yEvIjI3yui2NnZ2GPvwI7hrxkNQlJYiIzHB4EXdGpkcp/sNxU2/jkb3aw6lLm7w2PAZJFL9B/9FXj2FU8G7MKZnIvxbxZswOqImhFvOkgVhYkFmkZ6VDp0oQvqfm4oyJhbUDBQoC/HqyddxLDnY6LZSmQxDJ9yH+x6bD2sbW6TE3IBWa+C5LoKAq11743K3vtBZ8OpmpbUNnD74HDIH/dO3UhKjcOzvb9HDJwn9W18xYXRETUyZ8R9iEDUWJhZkFnHJ8ZDLa+5VXyplYkHNg1qnxsaLm7AjYqfBow6VBEFAj8AhmLp4CTx92yIpKhJqpdLg9glt/XGq/zCo6jgPwly0Eglkr70Dm3bt9dbJz83Agd1fwVkaizGdL5guOKKmSJ0N6Azf9IGoMTGxIJNTa9RITkuusXBbCy0UUr45UvPyy41deO/8+1BoDE8MKvl2CsDUxUsR0KcvUm7GoKzE8K2Ys908ERI4GiX/mW5obqonlsFpyHC95WWlxTiweyuUBdcxo/9FSCUGjtYQtWTKVHNHQASAiQWZQW5+LkrLS2Fna1ftepmsHLDc2RtEd+xU2mm8fOJV5JbnGt3W1csLDyxYhP5BdyE7JQWFOYbvWV9i74jgwCBku7gb3W9jKL73PrjPfERvuUajxrH9O5ESdw4PB4bDhlMjiQzDxIIsBBMLMrnc/FyUlZfB1sa22nUu3Kbm7GZBLJ4LeRE3C2KNbmvr4IBxc+Zi1JSpKCksQFZyssHTq9RyK5wcMBzxvu2N7rchFXXtCa+Vr+stF0URZ0L+wLVLRzAzMBouNsYnYUQtlirN3BEQAWBiQWaQk58DURQhk8qqXS/j+gpq5vIUeXgp9FWcTD1tdFuZXI4Rkx7AfXPnQyqTIvXmTeh0hh3IJ0okCOveD1e69DLLou4SDy94vv9JjQMxb3XtcgjOHP8D4/skoK1TogmjI2oGOGJBFoKJBZlcVm4Waru/KJfyxG1q/pRaJdadfx8/Rf9idFtBENBr+HBMWbgYrl5eSIqKglqlMrh9bLtOONN3CNQy2e0rNxCFrR1cNnwB6X+mPt4qMe4agg98h75+yejjfc1ksRE1G0qOWJBlYGJBJpeUlgwba9sa15VS4xe3EjVFIkTsjPweGy58CLVWbXT7dl27YdrSZfDv3h0pMTdQXmr4adSZHt4IGTwapTb6b/QbikYihfWb78OqdRu9dXKzU3Foz9fwtInH3Z24AxTRHVFxxIIsAxMLMimlSoms3Kwa6ysAQMHEglqY4JTjeOXkayhQFhjd1t2nNaYuXoLew0cgMzERRXmGr0kodnBC8JAg5LZyNbpfQ4kANIufhUO/gXrrlJYU4sDurdAUR2BK3wuQCIZN7SKi/+CIBVkIJhZkUpULt/+7I5RG0EAj0ZgpKiLzicqLxvPBLyKh0Ph1BXaOTrjvsccxYtJkFOXlITs1xeBF3Sora5wYOAJJPm2N7tcQpfdPg9vUB/WWq9UqHP17BzISLuLhwHBYc6tpojvHNRZkIZhYkEnl5OegXFFzRyiFhKMV1HJllWfjxdCXcC7jvNFt5VZWGD1tOsbPmQuIQFpsrMGLunUSKS72GojrnbrDuCP86lbUuz+8nl2pt1wURZw89iuuhR3FrCERcLbOb8DeiVogVQYg8swXMj8mFmRSFTtCAVKJtNp1JT+tpBauXKPA22few+8xfxrdVhAE9B01Gg8sWAhnd3ckR0dBozZ87caNDl1wrs9gaP7zc3knir3bwOvdj+qsE37hCM6f2IvJ/RLQ2jGl3n0SkbYiuSAyMyYWZFK5+bm1bjnJ9RVEgA46fH19Oz6+/Bk0OuOnBnbo2QvTlixF285dkHwjGooyw7dwTvNqg+ODR6Hc2sbofiuV2znA9cMvILG21lsn7kYYQg7+gMEdktDDM/KO+yKi/+A6C7IATCzIpDJzsmAlt6pxnYkF0b8OJR7G66fWoFhVbHRbT9+2mLp4KXoOGYqMhHgU5xs+zajQqRWODbkL+U6tjO5XLZXB9p2NsPLw0lsnKyMRh/dtg69jAkb6XzS6DyKqA3eGIgvAxIJMRhRF5ORlw7qWTzMVnApFVM3VnGt4PmQlUoqNv1lwbNUKEx9/EkMn3I+CnGzkpqcb3FZpbYPjg0YhxUv/FrH/pQMgPvMS7Hv20VunpCgfB3d/BaE8GpN6nYdEaMhVHUQEdY65IyBiYkGmU6YoR0lZKaytaiYWSi7eJqohvTQdK46vxOWsMKPbyq2tcdeDD2HMrNnQqtVIi4szeMconVSK870HIapDF4Pql09/GC4TJuktVykVOLxvO3JSL2HW4Muwkhp+qB8RGUhbYu4IiJhYkOkUFRdCqVLCxqrmHG6lhDcaRLUpVZdizem12Bf3t9FtJRIJBt5zLyY++RQcnJ2RHB0FrcbAtRuCgMhO3XG+10BoJfp/VRQNGALPxc/oLdfpdAg98jOirh3HrCERcLQqNPJZEJFBmFiQBWBiQSZTWFwEpUpRY8RChMgzLIjqoBW12HxlC/4X/iW0d7ClZOe+/TBtyTL4dOiA5OhoKMvLDW6b4tMWoQNHQlHLSGOxbzt4rf2gzvaXzx7AxdN/YdrAWHjbc3EpUaPRlpo7AiImFmQ6hcUF0Gp1kMlk1a5rBC1Ezrcmuq298X/hzdNvo1Rt/A2Ed7t2mL5kOboOGoj0+DiUFho+cpDfyhXBgUEodHCqulbm6Az3DzdDIpfrbRcTeQGhR37GiM5J6Ox2w+iYicgIWuM3eyBqaEwsyGQKi4tqva6RGL7fPlFLdynrMl44/hIySo3fs97J1RWTnliAQWPGIjcjA3mZmQa3Lbe1w9EBIxBrYw+VTA779zZB5uKqt35GahyO/LUd/i6JGOp3yehYichInApFFoCJBZlMQVF+rWdYqAQmFkTGSC5OwfMhK3E9J8Lotta2trh31mzc/eBDUCnKkR4fb9CiblEUkZSYgPMDhgPvfQy7Lt301i0qyMHBPVthpY7BfT3Oo5YfeyJqaJwKRRaAiQWZTJaeMyw4YkFkvCJVEVadWo3DiUeMbiuVShE4bjwmzn8Ctg72SLoRDa227rUbmUmJcGzlgnGPzoVL3/566ymV5Ti0bxvyM8Ixc9AlyPnzTWQanApFFoCJBZlMbkEerKxqJhYqLtwmuiManQabLn+Kr69th07UGdVWEAR0HTgIUxcthY9fOyRFRUKlrH3b5/ysLIg6Efc8NBO+nQL0PqZWq0XIwR8QG3ESs4dcg72cNzpEJsMRC7IATCzIJNQaNcoUZZDLai70VPMTTaJ6+f3mn3jn7Hso1xi+21OlNh07YtqSZQjo2x+pN2NQ9p+1UKVFRSjOz8OIyQ+g26DBeh9HFEVcOLUPl8/ux/TBMfCwM3z9BhE1AK6xIAvAxIJMolxRDo1GU2tiwalQRPV3NuM8Vh5/BVll2Ua3beXhgSkLFmLg3fcgJzUVBdkVj6FSKJCVnIT+QXdj8Nhxta6RqhR9/QxOHtuFu7snoaNL7B0/DyK6Q5wKRRaAiQWZRLmiHGqNutbEgou3iRpGfFECng95EdF5xm/tamNvj7GPPIpR06ajrLgYGYkJSI2NRdcBAxE0fQakUqnetqlJN3D0r2/RxTMRg3zD6vEMiOiOcSoUWQAmFmQSlYnFf8+wAACtxPgDv4iodgXKArxy4jWEpIQa3VYqk2H4/ZNw/2PzYWVtA99OnTD2kUdhY2env7/8LBzcsxX2QgzGdb1Qn9CJqD44FYosQM27PKJGUFZepncqlA7GLTolorqpdCp8cGEjUopTMLvrrDqnMP2XIAjoMWQovNu3h5W1DRxdXPTWVZSX4tDur1CScw1PjLwEGTdiIDIfUQ3o1IBE/6GVRI2NIxZkEuWKcuh0ulqnU2gFJhZEjeHH6J+x/sIGKLW17/ZUFzdvnzqTCq1Gg2P7dyIh5gweGXIVdjJOwyAiaumYWJBJlCv071ajY2JB1GhOpJ7Ey6GrkKfIa7DHFEURZ0L/RPiFQ3gw8AZcbY1fME5EjUDQvxaKyBSYWJBJlCnKAD2zMXQC11gQNaaYgpt4PuRFxBbENcjjRYSfwJmQ3zG2VyLaO8c3yGMSUQMQeFtH5sVXIJlEmaIcEMVayzhiQdT4cspz8VLoqziddqZej5OcEIlj+3eie+sU9G99tYGiI6L642gFmR8TCzKJ0tISSCS1v+lx8TaRaSi0Crx7bj1+ubHrjtrn5aTj4J6vUFZaCLl9+4YNjojqh6MVZAH4KiSTUKgUkEhqf7lx8TaR6YgQsSNiJz68+DHUOsPPkCkrLcbB3VuRmZaA1n6dkaXwR3xRz0aMlBrb9XgdHnxdjQ6zlLAbq4T7ZCVGLVdhz8ma01MjE3QY/4IKDuOVcJ2oxKNr1cguqH0Uuja7T2rR/0kVbMYo4fegEqu/1kCjqd4+IkGHkctUcByvxMAFKpy+VvN3w8afNOgxT1WjLYHrK8giMLEgk1CqVJDqG7FgYkFkckeTj+HVE6+jUFl427oajRpH9+9AXEwY2rTrXDX6eCn7Hii0to0dKjWSxEwRxeUi5o2XYtNyGV6bW/F9nfyKBlt2/5tcpGSJGPW0GjdTRbzzpBQrZkqx74wOY55XQ6W+/Q3+32e0mPKqBq0cgE+elmHKCCnWfqvF8k3/bk+s1YqY9poGWh3w/mIZPFsJeOBVNYpK/338rHwRb+7Q4sNlMshkhm+h3HIwsSDzE0RRz8R3ogb00bZNuJlwE+3atKt2XYSIUM9TZoqKiLzsvPDakFfQzsmv1nJRFBF6+CecPPYrPH38YWvnUK28g1M4hnj9ZYpQyQS0WhEDFqihUAFR31oBAJZsVGP7fh2ivrWCn1fFDf3hCxWJxf+el2HB5LpvaHvMU0EuAy78T16VEKzaqsE7O7WI+EaOru0kiErUodtcNRJ/ruijTCHCfbIKv6+VY9zgis9An1yvRlY+sPtdntNQK6kTMDzL3FFQC8cRCzIJlUoJSS3zP0UwryUyp8yyTLx4/GVcyLxYa/nVS8E4d2IPXNx8aiQVABBX1AeZZbUnJdT0SKUC2noIKCj5971513EdJg6VVCUVAHDvQAk6txXwc3Ddu/pFJOgQkSBiwURptVGGJVOkEEXg15CKEevyf45acXGs+L+djQBba6BMURHHpRs6fHdIh41Lea6vXlxjQRaAr0IyCZVaVesaCyYWROZXpinDW2fewZ8391S7nhB7FcEHv4PcygZOrdz1tj+fNR5aHadhNFWl5SJyCkTEpor48GcN/j6nwz39K96vU7NFZOUDA7vUnHo0uKuAyzF1v4dXlg/sWr19a3cBvh7/lnduK8DZAXhjmxaJGSLe/0GDolKgf+eKOJ7+WINl06To5MspUPrxZ5DMj6k/mYRKrda7eJuIzE8n6rD12tdILknB4t4LIJVIkRwfgcL8bLTv1LvOtkVqN0TkD0Evt5MmipYa0vOfa/C/3RUjBxIJMG2kBJ8+U3F7kJ5bcePv41bzht7HTUBeEaBUibC2qv2G/3bt03Iqyu1tBXzxrAxPrNdg489aSKXAuoVStPMW8P0hLW6mivhrHW+c68TF22QBmFhQoxNFEWoNEwuipuBAwkHkK/Lx2pBX0H/IeMREXURmWjxatw2os931/GFo5xgBJ6t8E0VKDeWZGVLMGC1FWo6In4N10OoA1T8bhlVOUbKuZVmDjdW/daytan/s27UvKvv33w/fK8X4QAmik0T4+wjwcq1Ya7Hyfxq8/aQMDrbAmu0afLNfCwdbAWvmSzF1FG+mqzCxIAvAOz1qdBqtBjqdrtY1FkRkec5lnMfRpGDYOzhjWNBUiDodykqL6myjE2U4nzXeRBFSQ+raToJ7B0owd7wUe9+To6RcxKSX1RBFEbbWFXWUtexMrFBV/L+yTm1u1972PwmJi6OAIT0k8HKtGOF49zstPF0EzJ8gwdd/6bD5Ty22vijHMzOkmLlGg5spnE77L/6Ora/HHnsM7du3N3cYTRpfhdTo1Bo1dDptrSMWAjhflsgSfX1tG4pVxejcPRBdew1FVkYibreJYGZ5e55t0QzMGC3F+SgRN5LFqilMlVOabpWeK8LVCXqnQQG4bfvW7vrbJqSL2PCTFpuWyyCRCPjhiBYLJ0txd38JHr9fiqE9BPx4tO7F4y2KpI4Mr4Fs374dgiDAxsYGqampNcqDgoLQs2fjvQekpaXhjTfeQFhYWKP1QfXDxIIanVajhU4nMrEgakIKVUXYdu0bSCQSDAuahlatPJGbnXLbdjzboukrV1UkAYWlQBsPAR6tgAvRNRODc1Ei+naq+z28svxCVPX2aTkiUrJRZ/sVX2gwebgEI3pL/mkDtL5lrUZrNwGp2RyxqCJrZbKulEol3nvvPZP1VyktLQ1r1qxhYmHBmFhQoxP/+a82TCyILNfhpKO4lnMdbh5tEDhyEkqLC6FSKepso9TZISznLhNFSPWRlV/zfVmtEbHjgA621kD3dhXvz9NHSbD3tA7JWf/WP3JRhxvJIh4MklZrG5WoqzY60cNfgq5+Arbs1UKr/ff6F39qIQjAjNG134Ycu6TDX2d0WL/o36WgXq5AVNK/jxGZJMK7lkXhLZbMyWRd9e3bF19++SXS0tJM1uedKCsru30lalBMLMjsBJG/GIgskQgRn4dvhlqnRu8Bd8O/U29kpsbddkoUz7ZoGhZ+oME9z6qwZrsGW/dqsXaHBr3nq3Hphoi1T0jhYFfx3vzKozLY2QB3PaPCJ7u0eHenBg+uVqNXh4q1D5VSs4Fuc9V4eYumWj/vL5biSqyIsSvU+HKPFv/3ccXheE/eL0G39jVvQ7RaEc98qsELs6TVzs6YMVqKzbsr+l+0QY2rcaLexKRFkjqbrKtXXnkFWq3WoFGLnTt3YsCAAbC1tYWrqytmzZqF5OTkanXat2+Pxx57rEbboKAgBAUFAQCCg4MxaNAgAMD8+fMhCAIEQcD27dur6vbs2RMXL17EqFGjYGdnh1deeQUA8Oeff+L+++9H69atYW1tjY4dO+Ktt96CVsupdA2NP5FkEnWNTHDUgshyJRenYNeN3yG3ssbwu2fA2sYORYU5t23Hsy0s38y7JZAIFaMHizdWbPPq6wH8+Y4Mz838d6SgraeAkE1ydGwt4KUtGqz/QYv7hkhwaIO8zvUVlSYOk+K3t2TIKwKWf6zBb8e1eGWOFJ89W/vGlP/brUNekYiVs6u/fhZNlmDxA1Js/FmL/ed02LZShh7+vI2pIjNdYuHv74+5c+fedtTi7bffxty5cxEQEICNGzfimWeewZEjRzBq1CgUFBQY1We3bt3w5ptvAgAWLFiAb7/9Ft9++y1GjRpVVSc3NxcTJkxA37598dFHH+GuuypGT7dv3w4HBwc899xz2LRpEwYMGIDXX38dL730kvFPnurE7Wap0d0ucRBEAcwtiCzXLzd2YZTvCPi264q+A+/FqZDf4ODoAqlU/68Qnm1h+WbdI8WsewxL/nr4S3DgAz17yv6jvY8AMaT2BcRTRkoxZaRhfS2ZKsWSqTXrymQCNiyVYQNP366dCRMLAHj11VexY8cOrFu3Dps2bapRnpiYiNWrV2Pt2rVVIwcAMG3aNPTr1w+ff/55teu34+XlhQkTJuD111/H0KFDMWfOnBp1MjIysHnzZixcuLDa9e+//x62tv+u/Vq0aBEWLVqEzz//HGvXroW1deMvfG8pmOqT2UlFfqpJZMlUOhU+D/8fBEHAoBET4d2mIzLT4m/b7nr+MBSpXEwQIRFBaro1FgDQoUMHPProo9iyZQvS09NrlP/222/Q6XR46KGHkJOTU/XH29sbAQEBOHbsWIPHZG1tjfnz59e4fmtSUVxcjJycHIwcORJlZWWIiopq8DhaMiYW1Ogq5kFC7wJuJhZEli88+wrPtiCyZHI3k3e5atUqaDSaWtdaxMTEQBRFBAQEwMPDo9qfyMhIZGVlNXg8bdq0gZVVzZG169evY+rUqXB2doaTkxM8PDyqRjwKCwsbPI6WjOOJ1OgkUgkEQdC74FPGxIKoSfj62jYM8h7wz9kWF3D1cgjadegJQdA/l7HybAt/p2smjJSoBTJDYtGhQwfMmTMHW7ZsqbFeQafTQRAE/P3335BKa/6ed3BwqPq7vvcQrVZba1t9bh2ZqFRQUIDRo0fDyckJb775Jjp27AgbGxtcunQJK1euhE6nM/jx6faYWFCjkwiSinUWejaS4YgFUdNQebbF0/2XYVjQNCTHRyI3OwXunm3rbHcp+x742MfCRlpuokiJWiC5u1m6XbVqFXbu3Il169ZVu96xY0eIogh/f3907ty5zsdwcXGpdTF3YmIiOnToUPXvuj7E0Cc4OBi5ubn4//buPL6t+k4X/3O075YtyfvuxHZiO/sehySQBQiBEGgDLTO0lN5yO7233Ol0pjPtnQKlv5npfm/LMi0tpPOjEMpSIJS1QFkChLCF7JvtxPFuSV60S+fcPxw7MbEledPR8rx5+ZVE+h7pYzCKPvouz5NPPjlqo3dTU+zlnDRxXApFM06hiD5joeTJMUQp45XTr+JgzyFmWxAlG5kai6qqKtx00034z//8T3R0dIzcvn37diiVStx5550X/f0vSRJ6e3tHPca7776LYDA4ctvu3bsvOpbWaDQCwIROlBqe8biwhmAwiHvvvTfux6D4sbGgGacQFIAgQJTGnm7kjAVR6pAg4Z5P7huVbdHBbAsi+cnUWABDJ0SFQiEcPXp05Laqqircfffd+MMf/oDGxkb8+Mc/xv33349/+qd/Qk1NDR588MGRsbfeeis6Oztx+eWX4/7778e3v/1tfPWrX0VVVdWo56mqqoLVasX999+P3/72t3j00UdjzjysWrUK2dnZuPnmm/Gzn/0MP//5z7FixYqYr1k0OWwsaMYplUqolMooeyy4Io8olZwZaMWTx/90PttCq2e2BZHcZGwsZs2aNebxr9/5znfwxBNPQKFQ4M4778Q//MM/4JlnnsGmTZtw9dVXj4zbvHkzfvrTn+LYsWO4/fbb8c4772D37t0oLi4e9XhqtRo7d+6EUqnEbbfdhhtvvBF//etfo9Zms9mwe/duFBQU4Hvf+x5+8pOfYOPGjfjRj340Pd88jSJIbNkoAe765Q/gdDtRlFd00X1NxhacMbbKUBURTZZGocEvL/0FCoz5+OuLf8Cevz6Jkoq5UbMtAKAh5w1mWxBNN6UFWD39pywRTRRnLCgh9Fo9IpHImPdxKRRR6gmKQdw3KtuiktkWRHLRcZkhJQc2FpQQet34jQWPmyVKTR93f4LXzgxnW2yHKEaYbUEkB1253BUQAWBjQQli0BsQEcduLNSiOsHVENF0+e2nD2IgOIDqucsxp2EVujpaYm6KHM62IKJpwsaCkgQbC0oIg84w7oyFJnJxSiYRpYa+YD8ePPh7KBQKrFq3HVlWB3q7Y++Z+rD7MvgjF4dZEdEksLGgJMHGghJCr9NDGue4WY3IxoIolb3S8peRbIsVa65mtgVRorGxoCTBxoISQqNWAxg7MVPLxoIopU0+22IeOr3RU7uJKA5sLChJsLGghNBoNBDG7iuggAIqnm1PlNIuzLZYtf66OLMtBGZbEE0HXYXcFRABYGNBCaJVaxHtw0suhyJKfY8dfRxtg+0oKZ+DBUs2wNXTjkgkHPWa/pAdh13LE1QhURpSOwClUe4qiACwsaAE0Wl1ADDu0gg2FkSp77PZFnmF8WVbHHCtZrYF0WRxGRQlETYWlBBGgxEKhWLcI2fZWBClh+FsC5PZilXrrmW2BdFMY2NBSYSNBSWE0WCCRq1BMBQc835NhFkWROliONuipm7FBLMt6hJUIVEa0ZXJXQHRCDYWlBBGgwEatRqhUGjM+zljQZQ+xs62OBvzug97NiAQ0SWgQqI0wo3blETYWFBCmGLMWOj4ZoIorVyYbbG8cSs8A+7Y2RYRAz7quTRBFRKlCS6FoiTCxoISQqvRwqA3jjtjoWdjQZRWxsu2iIXZFkQTpK+WuwKiEWwsKGGslqzoMxbRl2ATUYoZzrbQaHXnsy3czLYgmjYqG6BjI07Jg40FJUx2Vs64MxZKKLnPgigNfTbbwtnTxmwLoulimi93BUSjsLGghLFarIiI47+h0Ef0CayGiBJhrGyLrvbmmNcx24IoDmwsKMmwsaCEMRmNEITxf+S4z4IoPX022yISCcPnHYh6DbMtiOLAxoKSDBsLShiz0QxJksY9z56NBVH6+my2RWd7M7MtiKbKyMaCkgsbC0oYq8UKtUqFUHick6HCXApFlK6YbUE0zRR6wMAToSi5sLGghLFasqHT6uAPjH2WPWcsiNIbsy2IppGxARB4eholFzYWlDBWSxZ0Oj18ft+Y9/PIWaL0xmwLomlkmid3BUQXYWNBCaNWqeHIcYw7Y6GEkgncRGmO2RZE04T7KygJsbGghCrIzUcgGBj3flPYmMBqiEgOzLYgmgamBXJXQHQRNhaUUPZsO0RRHPd+IxsLorTHbAuiqVICxnq5iyC6CBsLSqjsrKE3BeMdM8kZC6LMwGwLoikwVANKnqRIyYeNBSVUrCNn2VgQZQ5mWxBNkmmR3BUQjYmNBSXUyJGz/rE3cGtFLdSiOsFVEZEcmG1BNEnWNXJXQDQmNhaUUNkWKwwGI3yBsY+cBQBj2JDAiohITq+0/AUHe5ltQTQhWZfIXQHRmNhYUEKpVCoU5xXB4/WMO8YU4nIookwhQcI9H9+PsBhmtgVRPLQlgL5S7iqIxsTGghKutKgUwVBw3Pt5MhRRZjkzcAZPHH+K2RZE8eBsBSUxNhaUcHn2PADRToYyJbIcIkoCjx19HO0eZlsQxWRdK3cFRONiY0EJl2vLhVarHTeB2xDRQ8lPIYkySlAM4t6PJ5dtMcBsC8okVs5YUPJiY0EJZ89xwKQ3wuMbe5+FAAGWkCXBVRGR3D7u/gSvn/nrhLMt9nZtTlCFRDLTlgG6crmrIBoXGwtKOKPegFx7XtQN3FkhcwIrIqJk8dsDD2IwODjBbIsKZltQZuBsBSU5NhYki/KiMvj94x85yxkLoszkDvThwYM7mW1BNBbur6Akx8aCZJHvyIeE8T+FtITMECQhgRURUbJ4eZLZFh/3rE9QhUQy4YlQlOTYWJAsHDYHVCr1uMfOKqCAmadDEWWkyWZbnOyfjy4fsy0oTekqAF2p3FUQRcXGgmSR78iHyWDCoGdw3DGWIJdDEWWqyWZb7O1ktgWlKc5WUApgY0GysJgsKHDkY8Az/okv3MBNlNkmnW3hZrYFpaFsLvWj5MfGgmQhCAKqK6vhi7WBO/phMESUxiadbeFktgWlGUEN5FwudxVEMbGxINkU5xdDEABRFMe8Xy2pYYjoE1wVESUTZlsQYWgZlMoqdxVEMbGxINkU5RfBaDBh0Dv+PovsoDVxBRFRUhrOtqieu5zZFpSZ7NfIXQFRXNhYkGwcOQ7Ysm3oH+wfd0w2lzMQZbzhbAulUomVa69ltgVlGAGwXSV3EURxYWNBslEoFKgur4YnyoxFVtAChcQfU6JMN5xtYc8tZrYFZRbzUkBbKHcVRHHhOzaSVWlRCSRJGndZgxJKZPHYWaKMx2wLylj2q+WugChubCxIVkV5xdDr9FFPh+JyKCICmG1BGcrG/RWUOthYkKwKcvORZc6Kus8ihxu4iegcZltQRjHMAQyz5a6CKG5sLEhWGrUG1RXVURsLQ8QAbUSbwKqIKFkx24Iyim2r3BUQTQgbC5Ld7IrZEMVI1OMjOWtBRMOYbUEZg8fMUophY0GyqyiugNFgwoBn/DcG2QF+0khE5zHbgtKethgwL5a7CqIJYWNBssuz56HAkQ93v3vcMdZQFgRJSFxRRJTUmG1Bac/G06Ao9bCxINkpFArU1zTA6/OOO0YlqZjCTUSjMNuC0pr9WrkrIJowNhaUFCpLKqBQKBAKhcYdYw/YE1gRESU7ZltQ2tJVAtY1cldBNGFsLCgplBeXI9tijbocyh7I4XIoIhqF2RaUlvL+Ru4KiCaFjQUlBaPBiNmV1XAPuMcdo5JUsHI5FBF9BrMtKL0ogHw2FpSa2FhQ0qitqEE4HIp6sosjYEtgRUSUCphtQWkl+9KhE6GIUhAbC0oa5SXlMBpMGPQOjjvGxuVQRDQGZltQ2si7We4KiCaNjQUljaK8IhTmFcLpdo47Ri2pYQ1mJbAqIkoVF2Zb1NavRGdbE7MtKLWosgE7j5ml1MXGgpKGQqHAorqF8Po8Ud8M2LkciojG4A704aGDv4dSqcSqdduRlZ0bZ7bFZcy2oOSQuwNQaOWugmjS2FhQUqmuqIZeZ4iaaWEP2LgciojG9FLLKzjUexj23GIsa7wKngFXHNkWRmZbUHLI+1u5KyCaEjYWlFRKC0tRlFeIXnfvuGOGlkNZE1cUEaWMoWyL+xAWw5i/+DKUV00k24IbZklGxgbAvEjuKoimhI0FJRWlUomFdQsx6B2Muhwq35+bwKqIKJWcHjiDJ4//CRqtDqsvvT7+bIuuKxCR+NciyYSzFZQG+ApKSaemsgZ6nR4+v2/cMbZADlSiKoFVEVEq2XXsjxPPtgjacdi1IkEVEl1A0AB5N8pdBdGUsbGgpFNaWIrC3EL0usZfDqWAArl+RwKrIqJUEowEcd8nv74g26JiAtkW1hmvj2gU2xZAbZe7CqIpY2NBSUelUp1bDhX9DPo8Locioig+6voYr59541y2xXZEwvFlW7zffXmCKiQ6p/BrcldANC3YWFBSqqmshk6ri3o6lDlsgjFkSGBVRJRqRmVbNKxEV3tzzGyLDm8FmvvnJqhCynimBYB1ndxVEE0LLlKnpFReVI6C3AJ09XajVF867rg8fx5OqZsSWFlmOv7Hozj6h8Mwl5ix9v9eNnL7nu+9CefBi5esORbmYvm/rorrsU+/0oxTfzoBb5cXOrseFVsqUbGlatQY5+FeHHhgPzxtHmRVZWHebQtgKjaPGnPggf3wnB3E8u/H97yUGdwBNx46+Ht8Y+HXsWrddpxpPgxn91nYcqOfAPVBzwYUGE9Bq4x+VC3RlBV9U+4KiKYNZywoKalUKixfsDzm6VC5fgczLWaYr8eHE08cg1KnHPN+nU2PBd9cPOqratvsuB675cUm7L/nY5hKLai7dR6ya3Jw8IFPceLJYyNjQp4Q3v+396DL1mHuzXUQQyL2/WgvpMj5n4uB0/04/XIz5t5SP7VvltLSZ7MtBgdcCAUDUa9htgUlhLYYyP2c3FUQTRvOWFDSqquug8VkQd9AH6wW65hjNJIaOYFs9OqciS0ugxzeeQDW6mxIooRQf/Ci+9UGFYrXlUz4cSOBCI48fBi5i/Ow5B+XAQDKNpUDooTjfzyK0k3l0Jg0cB11QgxGsPgfl0GpUcKxKBevfu1leDoGYSoamrU4+LtPUbqxHOYSy5S+V0pPw9kW/2f9zzB/8WU4cfgDnG46hJKKOVGvO9k/HxWWT5Grb01QpZRxCv8OEPhWjNIHZywoaRXmFqKmohrdzu6o4/L9eQmqKPP0HuxB+5421H2lIeo4MSIi7It+lOdn9RzoRmggiLIrKkbdXn5FJSL+CLr2dQIAIsEIFGoFlJqhGRO1STN0eyACAOh4rw19p/pQfUPthJ6fMsuobIv110Gj1THbguSlNAMFt8hdBdG04qslJS1BELC4YTFEMYJwePw3rTnBbOjCugRWlhmkiIQDD+xHyYYyWMqyxh032D6IF27YjRe+sBsvf/l5HP3DIYhhMebj95/qAwBYq7JH3Z5VZQUUQH+Te+jPlVkIe8M4+fRxeLu8OPboEagMKpiKTIiEIjj04AHU3FALzbmGg2g8I9kWFXMxf8llzLYgeeV/GVCN/9pKlIrYWFBSq5tdB3u2Az2u8T9ZFCCg0JefwKoyQ8uLTfB1eVHzhfGXixjzjZh9fQ0W/v0SLPjmIlhnZ+P4H4/ho198EPPx/S4/BIUArVU76naFWgGNSQO/c2jTrCHXiNq/mYsjvz+EV7/2ElpebEbDbQug1Kpw6ukTUGpVKNtcMdZTEI1yYbbFssatzLYg+QgqoOjv5K6CaNpxYR8lNZPRhEX1i/DCGy8g3zF+85Dvz0OL8TQiitiflFNswf4gjj5yGLM/XwNtlnbccfO/sWjUn4vXlWL/vR/h9MstcG2tQnZNzrjXisEIBNXYn20oNEpEgpGRP1dtm43idSXwdnphLDKdazx8OPHEcSz95+UQRRGHf3cAHXs7oLVqUXdLA3Lm2Cb4XVMmGM62WFdyCVauvRa7//gr+LwD0BvM414znG1xadGjCayU0pr9WkBXJncVRNOOMxaU9ObPmQetWhs100IlqZDLwLxpc/QPh6A2a1BxZVXswZ9Rec0sAEDP/uh7YxQaJaRxlkyJwcjInophWqsO2TU5I0ueDv/+IOzz7LDPc+D4Y0fRs78Hi7+1FPnLC7D37ncQ8ly80ZwIOJ9tUVO3ArX1K5htQYlXfLvcFRDNCDYWlPSqSqtQWliCrt6uqOOKfAVA9PcGFIfBtkG0vNyMii2V8Lt88HZ54O3yQAyJECMSvF0eBAfGf9Out+sBIOoYANBl6yCJEgLu0cd+iiERwcEgdDnj75txHXWi/Z02zP3S0KbytjdbUXXtLGTX5mD29TVQG9XofL8z3m+ZMsxwtoVSqcSq9dfBYnXA2X025nUf9GxAIML9XDRFWY2AebHcVRDNCDYWlPRUKhWWLVgGn98HURx/qZMhYkA210FPmd/pA0Tg4AOf4tWvvTzy5T7mgqdtEK9+7WUcf+zIuNd7OoZmlqItoQIAS8XQpkX3Sdeo290nXYB4/v7PkqShTeUVW6pgLDAO1ezyQ5ejHxmjzdYNfR9E4xiVbbF6C7MtKHE4W0FpjHssKCXMq52PP2c9D6fbCXuOfdxxhb4CuLTuxBWWhiylFiz5zrKLbj/68GGE/WHUfaUBhnwjQt7Q0DGw6vNLliRJwonHjwIAHAvOL02LBMLwdfugsWigsQw1HPYGB9QmNVpeaELe4vP7Z1peaIJSq0Tu4rH31LS+ehr+Xh9mf6565DZtlhaDrQNwLMiFGBbh7fBAa+UnyzS+UdkWSzbg+JEPcKbpMLMtaGYZ5gI5W+SugmjGsLGglODIsWNR/SK8uucvURuL4aNn/Sp/AqtLLxqLFvnLCy+6/dSzJwFg5L6eA9346Gf7UNhYDGOBEZFgBB3vtsN1xInSTeVDx8ae4zruwrv/+23M3lGDmhuG3rgptUrUfGEODvx6Pz740V44FubCeagXZ//aipovzoHGfPHxsWFfCEcePoTaL86FSq8eub1gVRGOPXYUkiTBddiJSFBE7mLmm1B0w9kWn6+5Ho3rr8cTbT9Gv7sHFuv4rzHD2RZXlP4WSoGHRdAElX8fEAS5qyCaMWwsKGUsm78Uez54GwOeAZiNY5/gIkBAka8AJ81NCa4u8xgcBuTMsaHjvXYE3H4IggBTsRkNt81H6abyuB6j/IpKCEoFTj1zAp3vd0Bn12PuLfWouGrsTePHHjsKnU2P4ktLR91efUMtgn0BHN91FFqrFov/cWnMpVhEwFC2xZri1SPZFu++8ScYzVYoleP/9TicbVGfsyeBlVLKMy8B7NfIXQXRjBKkWEdhECUJURTxy52/xKHjhzGrfNa44yKIYK99H0KKiSVBE1FmWpi7AHet+j4GB9zY9dDdcDs7UVA8/msMACiEMLaU/gZmjTsxRVLqa9gNZG+QuwqiGcXN25QyFAoFVi1eBVGMIBga/8QhJZQo8l68lIeIaCzD2RYmsxUr116LSDgMn3cg6jXD2RZEcclay6aCMgIbC0op9dX1KMovQmdP9KNEC30FUInKqGOIiIYx24JmVMWdcldAlBBsLCil6HV6rFq8GgOegahHz6okFQp9BQmsjIhSGbMtaMbkXAlYVshdBVFCsLGglLOofiFysnLQ6+qNOq7IWwiFyB9xIooPsy1o+glAOWcrKHPwXRelHHu2HUvmLUaPqyfqUgW1pEahf+wsBCKizxrOtgiLYcxfsgFlVQ3oOHsq5nUn++ejy1ecgAop5TiuB0wNcldBlDBsLCglLZu3DEa9Af2D/VHHFXuLoJD4Y05E8RnOttBodWhcfz00Wh363T0xrhrKtojwtYYuJKiGciuIMghfBSklVZZWYt7c+Wjvao86TiNqkO/LjTqGiOhCu479Ee2e9pFsC2dPGyKR6MdX9wftOOJanqAKKSXk3QToox9bTJRu2FhQShIEAWuWrIFWq8WAJ/qxkMXeYggSk06JKD7BSBD3ffJrCIKAZY1bkVdYga725pjXHXCuxkDQOuP1UQoQtEDpd+Wugijh2FhQyqqumI366nq0d7ZFHacTtSjwca8FEcVvMtkWEUmN97s3J6hCSmpFXwd0JXJXQZRwbCwoZSkUCqxddgmUKhU8Xk/UsaWeYih5QhQRTcDksi0q0TzAbIuMpskHSv9F7iqIZMF3WpTS5syag7mz5qKtK/qshUbSoMhXlKCqiCgduANuPHTovyacbfFhN7MtMlr5DwCVWe4qiGTBxoJSmkKhwNrll0AQBHh93qhjS7xFUIvqBFVGROngpeaXcbj3yISyLfwRIz7uWZeYAim5mJcPbdomylBsLCjl1c2uQ01FNdpi7LVQSkqUerjmlYjiJ0HCPZ9MJttiAbMtMo4CmPUzQOBhIZS52FhQylOpVFi7fC0kSPAH/FHHFvjyoAtziQIRxa+l/zSeOvH06GyLvtjZFu93Xc5si0yS/7eAebHcVRDJiq94lBbmzZmH2eWz0dreGnWcAgqUe0oTVBURpYtHjz6GDk/H+WyL7jZEIpGo1/QFHcy2yBSqnKG9FUQZjo0FpQW1So0NjRsAATFPiHIE7DCFjAmqjIjSwdjZFk0xr2O2RYao+AGgcchdBZHs2FhQ2phX04CGmnq0dpyJOk6AgIrB8sQURURp48Ouj/DX1jeZbUGjWVYA+bfIXQVRUmBjQWlDqVRiw+qN0Gp06Bvoizo2O2SFLZCToMqIKF088OnvMBj0MNuChggqYNYvuWGb6Bw2FpRWaiqrsah+Edo6z8b8y75qoAIKbqwkogkYyrb4PbMtaEjh3wGmBrmrIEoafFdFaUUQBGxYvQEWkwVOtzPqWJ2oQ4mHx0ES0cRclG0x6Ga2RSbSFAHl/1vuKoiSChsLSjtlRaVYuWglOns6Ys5alHiLePwsEU3IRdkWlfXMtshE1fcCSpPcVRAlFTYWlJbWr1gPW7YdXb1dUccpoEDVYEWCqiKidMFsiwyX/xUgh5vyiT6Lr26UlnLtuVi3fC16Xb0xz5q3BXOQE8hOUGVElC6YbZGhdBVA1X/IXQVRUmJjQWmrcWkjiguK0doRPTQPAKoGKrmRm4gmZFS2xeqrmG2RASQogJrfcAkU0Tj4TorSltVixeZLNiMQ8MPn90Udqxd1KPYWJagyIkoXI9kWlmxmW2QAofh/AlmNcpdBlLTYWFBaW75gGepr6nH6bEvsjdyeIuh4HCQRTRCzLTKEYQ5QfqfcVRAlNTYWlNbUKjWuXH8lDAYjnH3Rj59VQonq/llA9PcDRESjXJhtsXLddmZbpCFJUAM1vwMUWrlLIUpqbCwo7c0qm4XVi1ejs6cDETH6xkprKAsFvvwEVUZE6WI428KRV8JsizQklH4HMC+UuwyipMfGgtKeIAjY2LgBRXlFaOtoizm+wlMGbYSfShFR/JhtkcZMi4HSf5K7CqKUwMaCMkKONQeb12yG1++FP+CPOlYlqTB7oCpBlRFRumC2RfqRBB1Q+1tAUMldClFK4CsZZYzlC5ejrroOp9taYo7NCWYjz5ebgKqIKJ0w2yK9CBV3AYZaucsgShlsLChjaNQaXLnuCui0ejjd0TdyA0DVYAU0EU0CKiOidMFsizSSvQko+h9yV0GUUthYUEaprqjGmqVr0NHdgXA4HHUsl0QR0WQw2yL1SdpSoPYhQBDkLoUopbCxoIwiCAIuX7sZlWWVaIljSZQtmINcvyMBlRFROpl8tsWcBFVI45EEDYS5jwDqHLlLIUo5bCwo41hMFlx92VYoFAq4+90xx88aqOQpUUQ0IZPPttiIILMtZCXM+hlgXix3GUQpiY0FZaR5tfOwZmkj2rraEI7EXhJV21/N4DwimhBmW6Qe0XETUHCr3GUQpSw2FpSRBEHAFWuvQHlROU63nY45PitkQZmnJAGVEVG6mGy2xYn+Bej2FSWgQrpQWDcHiupfyl0GUUpjY0EZy2qxYuuGrYAE9A30xRxf6i2BJWhJQGVElC4mm22xt+sKZlskUAQmqBoeB5R6uUshSml81aKMtnDuAqxesgpnO1pjnjUvQEBtfzVUIoOSiCh+zLZIbpIkQJjzO0DPUwCJpoqNBWU0QRBw5borUVJYGteSKJ2o5RG0RDQhzLZIbpGC/wmF42q5yyBKC2wsKOPlWHNw9WVbIUpiXKdEOQJ25PvyZr4wIkobk8222MdsixkVNKyEavb/J3cZRGmDjQURgMUNi7F2+SVo62xDKBSKOb5qoAKGMNfiElH8JpNt0c5sixkTUjigmbcLEJRyl0KUNthYEGFoSdTWS7eitqoGTWdOxfzLXgkl5vTVQCHyfyEiio874MbOC7Mtsuxw9rTFvI7ZFtMvLOmgmv8soMmVuxSitMJ3RUTnmIwmXH/F9TCbLOjo7og53hgxonpgVgIqI6J08WLzyzjiPJdt0XgVBvudzLZIMFFSAHP/AMG8QO5SiNIOGwuiC1SVVeGqy7agf7AfHq8n5vjcgAPFnsIEVEZE6UCChF99fEG2RVUDOtqYbZFIgZL/gMpxpdxlEKUlNhZEn3HJ0kuwfOFytLS1xDwSEgAqPOWwBrMSUBkRpYOLsi00WmZbJEif5SvQV/4PucsgSlt8hSL6DJVKhWs3bUNZYSlazrbEHC9AwJy+Gmgj2gRUR0TpYCjbovNctsUGZlskgFOxDlkL7pG7DKK0xsaCaAz2bDuu3XwtlEolel29McerJTXm9tVCwU8TiSgOQ9kW/3k+26KgAl0dzTGvY7bF5PSGqmFd8Se5yyBKe3wXRDSOebXzcNmqy9DV2wWf3xdzvDlsYngeEcXtw66P8MZwtsW6axEJhZhtMQP6Anbol/wZChVP1iKaaWwsiMYhCAKuWHc5FtcvQlNrU1z7LfL8uSj0FiSgOiJKBw98+iCzLWaQN2SEVP80DFnFcpdClBHYWBBFodPqsGPrDlQUl+NUHPkWAFA5yM3cRBQfV8DFbIsZEoqo4Cl/ENaCxXKXQpQx2FgQxWDPtmPHVTtgMpjQ1hn7L3wFFJjbV8tkbiKKy4XZFktXb2G2xTQQJQE9tn+Ho+pquUshyihsLIjiUFNZg22broHP74W73x1zvEpSoc49F2pRPfPFEVFKuzDbYsHSjcy2mCJRAs7o/gEF874hdylEGYeNBVGcGpc0Yv3K9WjvaoM/4I85Xi/qUOfmSVFEFNuF2Rar11/HbItJEiXghHQbSpfdJXcpRBmJr0ZEcVIoFLhm4zVYMHchTp05hYgYezO3JWxBTf9sIPbWDCLKcMPZFqUVdZi3+DJmW0yQJAGHfF9EVeNPIAiC3OUQZSQ2FkQToNfpccNVO1BWWIqmM01xbeZ2BOyoHCyf+eKIKKVdmG2xvHErsy0mQJKAj93XYvb6X0GpUsldDlHGYmNBNEG59lzsuGoHDDo92rpib+YGgGJfEYp4DC0RxTAq22LtNmZbxGlf9ybMvvQ+aLU8NINITmwsiCZhzqw52L55O/wBP3rdsZO5AaBysAJ2v22GKyOiVDeSbVG/EjV1y5ltEcO7Zy9B5dr7YTJb5S6FKOOxsSCapMaljbhi7eXo7u3GoGcw5ngBAmr7q5EdsM58cUSUsi7Mtli1/jqYs2zMthjHntPLUbL6V7A5CuUuhYjAxoJo0gRBwJXrr8SapY043XYagRjnzgPnMy4sQUsCKiSiVHVhtsWy1Vcx22IMe04vRdGqe1BUWi13KUR0DhsLSjqCIOCOO+6Ia2x5eTm+9KUvzWg90ahVanxuy+exoG4BTp4+iXA4HPMaJZSo75sDU8iUgAqJKBUx2yK6904vQsGKe1BWWS93KUR0ATYWFNNDDz0EQRBGvnQ6Haqrq/GNb3wDnZ2dM/78e/bswR133AG32z3jzzUZRr0BN237IqrLZ+NEy3GIohjzGpWkQoN7LgxhQwIqJKJUNPlsi8shpnG2xXtnFsKx7F5UzJondylE9Bnp+8pD0+6uu+7Cf/3Xf+FXv/oVVq1ahfvuuw8rV66E1+ud1ufx+Xz43ve+N/LnPXv24M477xyzsTh69Ch+85vfTOvzT4bNasPfbP8bFOYV4eTpk3EdQ6uW1JjnroM+nFlrookofpPLtsjFYdeyBFWYOKIEvH5qOexL7kFl9QK5yyGiMbCxoLhdccUVuOmmm3DrrbfioYcewu23346mpiY8/fTT0/o8Op0OqjjPIddqtVCr1dP6/JNVnF+Mm7Z9EVnmLLScbYnrGo2oQYO7HtqIdoarI6JUNPlsi0YMhqwzXl+ihCMKvHBsLYqW/xRVNYvkLoeIxsHGgibt0ksvBQA0NTUhHA7jBz/4AaqqqqDValFeXo5/+Zd/QSAwerPhvn37sHnzZtjtduj1elRUVOCWW24ZNebCPRZ33HEHvv3tbwMAKioqRpZjNTc3Axi9x2Lfvn0QBAE7d+68qNYXX3wRgiBg9+7dI7edPXsWt9xyC/Ly8qDValFXV4ff/e53U/p3UlNZgxuu2gGlUonWjta4rtGJWsxz10ETSY4GiYiSy2SzLd7v2pSgCmdWIKzG04cuw6zVP8DsOUvkLoeIomA8JU3ayZMnAQA2mw233nordu7cieuvvx7f+ta38N577+Hf/u3fcPjwYTz11FMAgK6uLmzatAkOhwPf+c53YLVa0dzcjCeffHLc59i+fTuOHTuGRx55BD//+c9ht9sBAA6H46KxS5YsQWVlJR577DHcfPPNo+7btWsXsrOzsXnzUIhUZ2cnVqxYAUEQ8I1vfAMOhwPPP/88vvKVr6C/vx+33377pP+9LG5YDF/Aj0eeeQTtXe0oyI0djKeP6NHgrsd+6wGElKFJPzcRpacHPn0Qi3IXoaZ+JY4f3odD+99CaWU9BEEY95p2bxVaBuagzHw4gZVOL09Ahz8dWo/Fl/0Tquem3/IuonTDxoLi1tfXh56eHvj9frz99tu46667oNfrUVtbi9tuuw233nrryH6Hr3/968jNzcVPfvITvPbaa1i/fj327NkDl8uFl156CUuWnP/U6e677x73OefNm4dFixbhkUcewbZt21BeXh61xh07duAnP/kJXC4XsrOzAQDBYBBPPfUUtm/fPrJs6rvf/S4ikQg+/fRT2GxDoXW33XYbbrzxRtxxxx342te+Br1+8gmuqxevQigUxK7nHkNXbxdybbkxrzFGDJjvbsB+6wEElcFJPzcRpZ/hbIu/W/DfsWr9dTjTchjOnjbYHNFPgPqgewMKDE3QKP0JqnT6uLxm/OnAeqzYfDtq61fIXQ4RxYFLoShuGzZsgMPhQElJCW644QaYTCY89dRT2LNnDwDg7//+70eN/9a3vgUAeO655wAAVqsVALB7926EQjPzqfyOHTsQCoVGzYK89NJLcLvd2LFjBwBAkiQ88cQT2Lp1KyRJQk9Pz8jX5s2b0dfXhw8//HBKdQiCgHUr1uHaTdvQP9CHHlesk1yGGCJ6zHc1cM8FEV1kctkWJnzcuzZBFU6fjoEcPPbJBizf+D8xp2GV3OUQUZzYWFDc7rnnHrz88st47bXXcOjQIZw6dQqbN29GS0sLFAoFZs2aNWp8fn4+rFYrWlqGNjKvXbsW1113He68807Y7XZcc801ePDBBy/ahzEV8+fPR21tLXbt2jVy265du2C320f2hHR3d8PtduPXv/41HA7HqK8vf/nLAIaWbU2VIAjY2LgRV116FZxuJ5x9zriu04s6LHA18LQoIhpl0tkWfQtTKtui2ZmHpz7diMbNX8fc+Y1yl0NEE8ClUBS3ZcuWjVrC9FnR1voO3//444/j3XffxbPPPosXX3wRt9xyC37605/i3Xffhck0PYFxO3bswA9/+EP09PTAbDbjmWeewY033jhy0tRwzsRNN9100V6MYfPmTc/56AqFAleuvxKhcAh/fv3PUCqUyDJnxbxOK2rPLYs6CK9qeo/zJaLUNZxt8bnq67B6/XV48uEfo7+vF5YsW5SrhrItrih9EAohds6OnA62F+PNMxuxcdutmFW7WO5yiGiCOGNBU1ZWVgZRFHH8+PFRt3d2dsLtdqOsrGzU7StWrMAPf/hD7Nu3Dw8//DAOHjyIRx99dNzHj9WwfNaOHTsQDofxxBNP4Pnnn0d/fz9uuOGGkfsdDgfMZjMikQg2bNgw5ldubuw9EfFSKpW4esPV2LB6A9q62jDgiX6ayzCNqMF8Vz1MIeO01UJEqe/ibIuzaZFt8V5TJd7p2IqrPvdNNhVEKYqNBU3ZlVdeCQD4xS9+Mer2n/3sZwCALVu2AABcLtdFwXELFiwAgKjLoYzGoTfW8SZvz5kzBw0NDdi1axd27dqFgoICXHLJJSP3K5VKXHfddXjiiSdw4MCBi67v7u6O63kmQqVSYfvl27Fu+Tq0trfG3VwMhejVwxyantkcIkp96ZZtERZVeHb/fBz1bcPVO25HcVmt3CUR0SRxKRRN2fz583HzzTfj17/+NdxuN9auXYu9e/di586d2LZtG9avXw8A2LlzJ+69915ce+21qKqqwsDAAH7zm9/AYrGMNCdjWbx46JOr7373u7jhhhugVquxdevWkYZjLDt27MC//uu/QqfT4Stf+QoUitE99L//+7/jtddew/Lly/HVr34Vc+fOhdPpxIcffohXXnkFTmd8+yEmQqPWYMdVnwcAvP7e6yjKLYLFbIl5nUpSocFdh0NZR+DW9E17XUSUeoazLS4pXoOVa7dh9+P3wOcdhN4w/ocQw9kW64seS2Cl0XmCJuzaNx+GvHW4etvXYM2evtliIko8NhY0LR544AFUVlbioYcewlNPPYX8/Hz88z//M77//e+PjBluOB599FF0dnYiKysLy5Ytw8MPP4yKiopxH3vp0qX4wQ9+gPvvvx8vvPACRFFEU1NTzMbie9/7Hrxe78hpUBfKy8vD3r17cdddd+HJJ5/EvffeC5vNhrq6OvzHf/zH1P5lRKHVaHHD1qEAvVf3vApREmG1WGNep5JUqHfPxTHLCXTppn9GhYhST6pnW3QMFmLXe3NRUrMem7Z+BSazVe6SiGiKBOmza1OIaMaFwiE89eKf8NKbL8FhcyAnKyfua5uMLThjjC/Vm4jS2xXlm/H1Bbehu/MMdj10NyRJipltoVMO4qqy38iabXGway52f1SOhsWbcNmVfwutziBbLUQ0fbjHgkgGapUa2zdfiyvXX4keZw96Xb1xX1vhKcOs/iqAHwkQZbwXml/CEefR0dkWoeTNtoiISrx2qhG7P56NZY3bsXHrLWwqiNIIGwsimahUKlyz4WpcfdlWOPt60d0b/xKnQn8+6vrmQCHyf2GiTCZBwj0f34eIGDmfbXE2ObMtvGETnvh0Az5oysMlG2/EJZtuhFqtSWgNRDSz+K6ESEZKpRJbLt2Cazddi35PPzp7OuO+1hbMwXx3PdSiegYrJKJk19zfgqdOPA2NVofV66+DRqNFf1+sWdChbAtRSszbgC5fER7aswYdAw5s3HoLVlxyDZRKZUKem4gSh40FkcwUCgUuX3s5rtu8HV6fB2c7z150LO94zGEzFjjnMaWbKMONzra4NKmyLY46G/C7N+ZDm1WFa264HfOXXDbhfCIiSg1sLIiSgCAI2NC4ATduvRGSJKH5bHPczYVe1GGBax6swdiJ3kSUngKRwAXZFlcnRbZFKKLBa83r8fh7JaiqXortX/gHlFXWz8hzEVFyYGNBlCQEQcCaZWvw5eu/BLPBjOPNxxERo3/iOEwtqdHgrkOxt3CGqySiZPVh10d4s/UtmCzZWLl2GyKhEHzewajXDGdbTLduXyH+8NGVeP94FpatvgpX7/gmsm350/48RJRc2FgQJZkFcxfgv934VRTlFeFY0zGEwqG4rhMgoHKwAjV9s6FI0LppIkouv/n0d/CEPKipX4nqumXoam+KOfs5nG0xHURJwP6eVdi5ZxncPiM2XPVlXHbll3jyE1GG4LsPoiRUVVaFr33hv6G2shbHm47B5/fFfW1eIBfzXQ3QRrQzWCERJSNXwIWdB/8LSqUSq9dfD3OWDc6etpjXfdC9AcHI1PZqDYaseL7p83huXw6sOYW4esc3sWj5ZigUfKtBlCn4fztRkirILcBXb7gVSxqWoOlMEwY8A3Ffaw6bsNA5H1lBywxWSETJSI5si6b+ejx+6Dp8cnQQVTWLsP2L30bFrHmTfjwiSk1sLIiSWHZWNr78+S9j3cp1ONtxFk63M+5rNZIa89z1KPQWzGCFRJRsLsy2mL90w4xmWwQjOrzVfjV2H1iEzs4eLF55Ja7+/DeRY+frDlEmYmNBlOQMOgO+cPWN2HLpFrj6nDjbEf9xtAIEzBqsRHU/910QZZLhbAutVj9j2Rad3hI8e+pvseeAAmIkgg1bvoQNW74End449W+AiFIS32kQpQC1So1tG6/BTdtugkKhwImWEzHPqL9Qvj8Xi5zzYQxzAyVRppipbAtRUuDjnrV4+sgWHDnRivyiSmy78X9h8corGHpHlOEEKd6PPokoKRw9dRSPPrsLzWebUVlSCZ02/g2XIkScNDWh3dAxgxUSUbJYlLsQd676Vwz2u/Dog3ejr68bBUVVUa9RCiFsKXsAJrX7ovt6/fl4p+MKHGv2IhIJYd7iy9B46fUwmpijQ0ScsSBKOTWVNfj6Tf8dC+cuRNOZU+gb6Iv7WgUUmD1Yhbl9tVCJ/GSRKN1dmG2xat21k862CIlqfNB9GZ49/jnsP9wFo8mCLdu/jo1XfZlNBRGN4IwFUYry+X14+uWn8do7r8FgMKLAUQBBEOK+3q/w40jWMfSr4z9tiohST7Y2G/dt+CV0Ch2e/eP/xeH9b6O0sj7m68Xq/D+hzHwYbZ4K7O3cjNZOHwb7naieuxxrN30BNgcDOYloNDYWRClMFEW8sfcNPP3y0/D6fagoqYBSEf9MhAQJzcbTOGNoBeLvSYgoxVxRvhlfX3AbujvPYNdDd0OSJNgc0U+A0ikHkW9oxglXDdrOHIfBYMaKS67BwuWboVZrElQ5EaUSNhZEaeDwicN45NlHcabtDCpKKqDX6Sd0vUvtxjHLcQSUwRmqkIjkJEDAjy75N9Tm1GDvW8/iL3/eicLSaqjV0YM0B/qd6O1qRWlFHdZt/gKKy2oTVDERpSI2FkRporOnE3/88x/x4cGPYM+2w5HjmND1YSGMk6YmdOq7ZqhCIpJTuaUMv1j3U4RDQTzx//8IZ5oPo6R8zphjRVFEZ9spSJKIBUs3YtW662AwmhNcMRGlGjYWRGkkEAzgpTdewktvvYxQKITy4vIJH//o1LhwzHwCQc5eEKWdm+f+Da6v3o6WUwfw5MM/ht6YBUuWbdSYwQE3ejpPw5FXgjUbbkBN3fIJ7d8ioszFxoIozUiShIPHD+LxPz+BlrYWlBWWwWiYWGAVZy+I0pNWqcWvLv0/yDPk4tXnf4/33nwGJRV1UCqVCIdD6GxrgiAIqF9wCVat2w6L1S53yUSUQthYEKWpXncvnnj+Sez9ZC+yzFnIs+dN+FPHXo0Tx80nOXtBlEbGyrYwGCxw9bajsGQ2Vq+/HrNqF3OWgogmjI0FURoLh8N4/d3X8dxrz8Hj86C8uAJqlXpijyGEccJ0Cl367hmqkogS7R+XfAtrihtx6JO3sPuJe6DR6LBg2UYsW30VDEaL3OURUYpiY0GUAY41HcMf//w4TjQfR2FeEawW64Qfw6lx4aTpFHwq//QXSEQJdWG2xeFP30aW1THuRm4ionixsSDKEH0Dfdj96nN46/23AAEoKyyb8MZuESLOGM7ijLEVoiDOUKVENNMW5i7ANxd+Aza9LfZgIqI4sbEgyiCSJOGjQx/jmZefQfPZZhTnFyPLnDXhx/Ep/DhpPgWn1jUDVRLRTMnR5eDWhluwpmi13KUQURpiY0GUgVx9Ljz32nN4a9/bUAgKlBaWTnj2AgB6NL04aW5CQBmYgSqJaLooBAW2VFyBm+Z8AQa1Qe5yiChNsbEgylCSJOGjgx/hmVeeQcvZFhRNcvYigghOG1vRajgLSeDLCVGyWZS7ELfUfwllllK5SyGiNMfGgijDufpc2P3qbrz9wZ4pzV54lV6cMjVzeRRRklB6ldhWtBVfWnuz3KUQUYZgY0FEkCQJHx74EM/+5Vm0tJ1Gni0POdacSZ1j71b34ZSpGYPqwRmolIhiUYsqlHlKEWkKw6Az4O9v+V/ItefKXRYRZQA2FkQ0wt3vxstvvYw3338LXp8HpYVl0Ov0E34cCRK6tT1oNrXAz/0XRAkhSAKKvAUo9ZZAKSrR4+xBZ28nvrrjVjQubZS7PCLKAGwsiGgUSZJwouUEnnv1ORw4dhAGnQFF+UVQKBQTfiwRItr07ThtbEVYEZ6BaokIAOx+GyoGy6EXdfD5fTh9tgVGgxFrl6/FpjWbYDKa5C6RiDIAGwsiGlMwFMS7H72LF994EW2dbSjILUR2VvakHisshHHa0IqzhjZu8CaaRjmBbJR5SmAOmxERI2jrbIPX50VDTT22XLoFs8pmyV0iEWUQNhZEFFWvuxcvvvEi9nzwDgLBAMqKyqDVaCf1WH5FAGcMrejQd7LBIJqC7IAVZZ5SWMJmSJKEHlcPup3dKHDk4/K1l2PFwhXQqDVyl0lEGYaNBRHFJEkSjpw6it1/2Y0jJ4/AoDegMK8QKqVqUo8XUARwxnAWHfpOJngTTYA1mIUyTymyQhYAQP9gP852nkWWyYI1S9dg3Yp1yLHmyFwlEWUqNhZEFLdAMIB3P3oXr7z9F7R2tCInKwe5ttxJ7b8AgIAiiFZDK9rZYBBFlRW0oMxTCmtoKGvGH/DjTPsZKJVKLKpfhE2Nm1BWxJwKIpIXGwsimrD+wX68ufdNvP7eX9Hj6kGePQ85WZM7nhYAgkIQrYazaNN3QFSwwSAaZg1mocRTjOyQFQAQjoRxtuMs/AE/aqtqsfmSTaibXTfp5p6IaDqxsSCiSevs6cSr77yKdz98F4NeD4ryi2A2mif9eCEhhFZDG9r17QgrItNYKVHqECQBjoAdxd5CmMJDpzmJooiu3i443U6UFpViY+NGLJu/lPsoiCipsLEgoimRJAnNrc14+a1X8NGhjxCJRFCcXzyp/IthEUTQqe/CWX0bfCr/NFZLlLyUohIF/jwUeguhE4cOSJAkCV29Xeh19cCeY8faZWtxyfJLYDFZZK6WiOhibCyIaFqIoohDJw7hpTdewpGTR6FQKFCYVzilBkOCBKfGhbOGNrg1fdNYLVHy0EQ0KPIWosCfB5U0dCCCJEnodnajx9mNHKsNjUsa0bhkNRw2h8zVEhGNj40FEU2rUDiE/Yf349V3XsPx5mMQoEBhfiEMOsOUHtej9KDV0IZuXQ83elNaMIWMKPIWwhGwQ4GhPRIXHh2bnZWNxsWr0bikEbn2XJmrJSKKjY0FEc2IUDiET48ewGvvvIZjp45CAlCUVwSDfmoNRlAIoV3fjnZ9J4LK4PQUS5QgSlEBR8CBAl8+zOHzadiSJKHX3Yuuni5kZ1mxctFKrFm6BvmOfBmrJSKaGDYWRDSjwuEwPj12AK+/+zqOnDwCSZJQmFsIo8E4pceVIMGlcaFD14VerZOBe5TUTCEjCnz5yA04oJSUI7eLoogeVw96nD2wWrKwYuEKrFm6BoV5hTJWS0Q0OWwsiCghIpEIDpxrMA6fOIyIKCLfkQ+z0TzpY2qHBYUgOnXd6NB3wqfyTVPFRFMz3uwEMNRwd/Z0om+gD7bsHCybvxyrFq9EcX6xTNUSEU0dGwsiSqhIJIJDJw7hzb1v4tCJw/D4PHDkOGCz2qblLP4+VT869J3o1vYwE4MSTwIsIQvy/A44AvaRzdjDAsEA2rva4Q/4UZCbj9WLV2PJvKVw5NhlKpiIaPqwsSAiWUiShKYzTdj7yV68v38fnG4nLGYL8ux5UKvUU378iBBBt7YH3doeuDV9XCpFM8oYMiI3YIfD7xg5KvZCg95BtHe1AxJQXlKONUsasbBuIUxG0xiPRkSUmthYEJHsup09+ODTfXj7gz1o72qDSqlGQW7BlDd6DwsJIfRoe9Gt64Fb3QdMbeUVEQBAF9YhN2BHrt8BQ+Tin1VRFOHqc6Hb2Q2tRoPaqjloXLIa9TX1DLYjorTExoKIkobH58X+w5/grX1v4+TpkwiHw7Dn2JFtyZ6WZVLA0H6MHl0vurU96FP3s8mgCdFENHAEbHD4HbCEx06Z9wf86OzphMfnQXZWNubXzsPyBStQXTF72n6OiYiSERsLIko6kUgER04ewXuf7MWBowfg7ndDr9Mj15475TyMCwUUQfRoe9CrdaJP3c/lUnQxCTCFjbAFcpATzLloE/aw4dmJHlcPlEolSgpKsGLhCsyvncdQOyLKGGwsiCipdfd2Y//R/Xjv47043XYaoVAQOVYbbFYblEpl7AeIU1gIw63ug1PrglPjYkZGBlNICliDWcgJ5MAWzIZ2jD0Tw0bNTliyMa+2AUvmLUFNZc207BUiIkolbCyIKCWEw2EcbzmBjw99hA8PfASn2wm1So1cey5MBtOUj6z9rEGVB06NE06NC/3qAS6ZSnPaiBbZQStsgWxYg1YoMX7TGg6H0evuhavPBZVSiZLCEqxYuJKzE0SU8dhYEFHK6Rvow6dHD+D9T/bi5OlT8Pg8MBvMsGXbpm3D94VCQhgujQt9mj70qfvhZVZGytNENLCGsmANZiErmAW9qIs6PiJG4Opzwel2QpIk2Kw2zJszD/NqG1BbVcvZCSIisLEgohQmiiJazrbg0InD+PDAB+fyAQIwG4eaDL1OPyPPGxRC6Nf0o0891GgMqjyc0Uhy6oga1tBQE2ENZcEQif2zIUkS3P1u9Lp6EY6EYbVYUVc9F/Nr56OmsoZHxRIRfQYbCyJKC+FwGM1nm3H4xBF8eOBDdHR3IBAMwGwyw2aduSYDGNqf0a/uR9+5r0G1B6LAcD65CJIAY9gAc8gMc9gEc8gM4xjHwY5FFEX0D/bD6XYiEAogy2TB7PLZWFC3ALWVtcix5sxw9UREqYuNBRGlnVA4hKYzTThy8gg+PPAROno6EAwGYTKakG3JhtFgnPY9GReSIMGr9GFQPYhB1SAGVR4MqjyIKCIz9pwZSwIMET1MIRMsYTNMIRNMYSMUiP9Y11A4BFefC30DfYhEIjCbzCgtLMWiuoWYM2sOcm25M/rzQkSULthYEFFaC4aCOHW6CUdPHcH+I/vR1dMFj88DlUqN7KxsWM1WqFSqGa9DggSf0n++0VAPwqv08fSpCdBE1NBHDDCG9TBEDDCEDTCFjVBJE/vvJ0kSfAEfXG4XBjwDEAQBOVnZqJ1Vi9qqWswqnQWHzcFmgohogthYEFHGiEQiaOtqQ9OZJhw+cRjHm0+gb6APoiiOzGYY9IaEvqEMC2F4lT74VL6hX5U++JR++JU+RBSZt5xKkARoRA0MI83D+SZCPcEG4kLhcBj9g/3oG+iDP+CDTquDw5aLeTUNmFU+C1WlVdwzQUQ0RWwsiChj9Q/249TpUzjZchKfHj2Abmc3fAEfVEoVzEYzLCYL9Dq9bJ9cBxVB+JR+BBQBBBRBBJUBBBVBBBRBBJRBBBXBlAv1U4pK6EQttJFzX6IWunO/Dv1ZA2EadsKHI2EMDA6gb6APPr8PCoUCFrMFxflFqK+uR2VpJcqKyniaExHRNGJjQUSEoU+0Wzta0dzajFNnTuFEy0n09bvhC/ihVChhMppgMVlg1M/s/oyJCgmhkSYjpAghLIQRFiKICGGEFRGEhTAiQgRhxfnbI4IISZAw/E+87+MFSYBCUkABBRTnfi9AAaWkgEpUQS2ph34VVVBJ6nO/qqAWz90uqSa8bClekUgEA57hRsILhaCA2WRGYW4haqpqUVZUipKCElgt1qT670dElE7YWBARjSEYCqKtsw2tHWfR3NqEY03H4HK74PF7oRAEGA0mGPVGmAwmqNWp/am3dOE/ggRp5FZAgfPNRLIQRRFevxeDnkEMegcRDocgCAqYjSbkO/IxZ9YclBaWoqSwBDlZOWwkiIgShI0FEVEcwuEwOno60Nreipazp3Gs6ShcfW54vIMIRyIQBAEGnQFGgxFGgxEatYZvaKfB8Ebr4SYiEAxAgACD3gCLyYyyojKUF5cjz56Hwrwi2LNt/PdORCQTNhZERJMwHJ7W2dOFrt5OtHW2o+nMKfS4euHxeRAKBSFAgE6nh/6CL5Vy5k+gSkWiKMIf9MPn88Hn98Hr90IURQASdFodTEYzivOLUFlaiXx7PvJz85Fry+UeCSKiJMLGgohomkiShAHPADp7OtHZ04WOrna0tJ1GV28XfP6hN8xDb5YBtUoNnVYHnVYHvU4PrVYLpUIp83cws0RRRDAURCAYQCAYgD/gh8/vgySJEAQBWo0OBr0eVosVJQUlyHfkw2a1wZ5jR549DzqtTu5vgYiIomBjQUQ0w4KhIFx9LjjdTvS6nXC6nejs7kB7dzv6BwfgD/jhD/ghSRIEYahBUanU0Kg1F32p1eqkW+ojSRLCkTDC4TDCkTCCoSCCwfMNxPBfM4IAaNQaaDVaaDRa2Kw5KC4oRq4tD7ZsG2xWG2zWnIQf+UtERNODjQURkUwkSYLX54Wr34W+/j4Megcx4BnEoGcAzj4XnK5euPrdCAT9CIZCCAYDCIVDAAQIgnDuDbsEQIBSqYRKqYJSqRz5vSAI578gjP7zudsgDD2EKIkQJRGSKEEUh34viiIkSRr5fSQSQTgSRiRyPkF8uBFSKlVQq1RQKVVQqzUw6PSwZdvgsDmQbcmG2WRBltkCi8kCs9EMs8nMZUxERGmGjQURURITRRFenxeD3qHNy4OewZGZgEAwiEDQD7/fD4/PA4/PC5/PC4/fO7TESBQhYeiN/6gvSMAFfxYEAYJCAYUgQCEoRn6vUqnPNQpqqFVq6LW6kWN3h/eMXLicS6fVw6DTw6A3cNaBiCgDsbEgIkpDkiQhEolAwrkZCFGEKEmQLpiNGJ6ZUAiKcWc8iIiI4sXGgoiIiIiIpix5Eo+IiIiIiChlsbEgIiIiIqIpY2NBRERERERTxsaCiIiIiIimjI0FERERERFNGRsLIiIiIiKaMjYWREREREQ0ZWwsiIiIiIhoythYEBERERHRlLGxICIiIiKiKWNjQUREREREU8bGgoiIiIiIpoyNBRERERERTRkbCyIiIiIimjI2FkRERERENGVsLIiIiIiIaMrYWBARERER0ZSxsSAiIiIioiljY0FERERERFPGxoKIiIiIiKaMjQUREREREU0ZGwsiIiIiIpoyNhZERERERDRlbCyIiIiIiGjK2FgQEREREdGU/T/hZYlgp4VdFQAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "# Reels Content\n", "from transformers import pipeline\n", "import re\n", "from collections import Counter\n", "import matplotlib.pyplot as plt\n", "\n", "# Load classification model\n", "classifier = pipeline(\n", " \"zero-shot-classification\",\n", " model=\"facebook/bart-large-mnli\"\n", ")\n", "\n", "# Content categories\n", "content_categories = [\n", " \"news\",\n", " \"meme\",\n", " \"sports\",\n", " \"science\",\n", " \"music\",\n", " \"movie\",\n", " \"gym\",\n", " \"comedy\",\n", " \"food\",\n", " \"technology\"\n", "]\n", "\n", "# Keyword shortcuts\n", "category_keywords = {\n", " \"news\": {\"news\", \"update\", \"breaking\", \"reported\"},\n", " \"meme\": {\"meme\", \"funny\", \"lol\", \"haha\"},\n", " \"sports\": {\"sports\", \"cricket\", \"football\", \"match\"},\n", " \"science\": {\"science\", \"research\", \"discovery\"},\n", " \"music\": {\"music\", \"song\", \"album\", \"release\"},\n", " \"movie\": {\"movie\", \"film\", \"bollywood\", \"trailer\"},\n", " \"gym\": {\"gym\", \"workout\", \"fitness\"},\n", " \"comedy\": {\"comedy\", \"joke\", \"humor\"},\n", " \"food\": {\"food\", \"recipe\", \"cooking\"},\n", " \"technology\": {\"tech\", \"phone\", \"computer\", \"ai\"}\n", "}\n", "\n", "def preprocess_text(text):\n", " \"\"\"Basic text cleaning\"\"\"\n", " return re.sub(r\"http\\S+|@\\w+\", \"\", text.lower()).strip() if text else \"\"\n", "\n", "def classify_reel(text):\n", " \"\"\"Fast classification\"\"\"\n", " processed = preprocess_text(text)\n", "\n", " # Keyword matching\n", " for category, keywords in category_keywords.items():\n", " if any(keyword in processed for keyword in keywords):\n", " return category\n", "\n", " # Model classification\n", " if len(processed.split()) >= 3:\n", " try:\n", " result = classifier(processed[:512], content_categories)\n", " return result['labels'][0]\n", " except:\n", " pass\n", "\n", " return \"other\"\n", "\n", "def plot_category_distribution(counter, title=\"Reels Content Distribution\"):\n", " \"\"\"Generate pie chart from category counts\"\"\"\n", " # Prepare data\n", " labels = []\n", " sizes = []\n", "\n", " # Separate larger categories from others\n", " threshold = sum(counter.values()) * 0.05 # 5% threshold\n", " other_count = 0\n", "\n", " for category, count in counter.most_common():\n", " if count >= threshold and category != \"other\":\n", " labels.append(category.title())\n", " sizes.append(count)\n", " else:\n", " other_count += count\n", "\n", " if other_count > 0:\n", " labels.append(\"Other\")\n", " sizes.append(other_count)\n", "\n", " # Create pie chart\n", " plt.figure(figsize=(10, 8))\n", " plt.pie(\n", " sizes,\n", " labels=labels,\n", " autopct='%1.1f%%',\n", " startangle=140,\n", " colors=plt.cm.Pastel1.colors,\n", " wedgeprops={'edgecolor': 'white', 'linewidth': 1}\n", " )\n", "\n", " plt.title(title, pad=20, fontsize=15)\n", " plt.axis('equal') # Equal aspect ratio ensures pie is circular\n", " plt.tight_layout()\n", " plt.show()\n", "\n", "def analyze_and_visualize(reels, max_to_analyze=100):\n", " \"\"\"Complete analysis with visualization\"\"\"\n", " category_counts = Counter()\n", "\n", " print(\"⏳ Analyzing reels...\")\n", " for reel in reels[:max_to_analyze]:\n", " caption = getattr(reel, 'caption_text', '') or getattr(reel, 'caption', '') or ''\n", " category = classify_reel(caption)\n", " category_counts[category] += 1\n", "\n", " print(\"\\n✅ Analysis complete!\")\n", " print(\"\\n📊 Category Counts:\")\n", " for category, count in category_counts.most_common():\n", " print(f\"- {category.title()}: {count}\")\n", "\n", " # Generate visualization\n", " plot_category_distribution(category_counts)\n", "\n", " return category_counts\n", "\n", "# Usage\n", "results = analyze_and_visualize(explore_reels)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 1000 }, "id": "El_UugqBNggp", "outputId": "0ffb2936-9f88-4c44-cd5f-13759cb64572" }, "execution_count": 17, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "Device set to use cpu\n" ] }, { "output_type": "stream", "name": "stdout", "text": [ "⏳ Analyzing reels...\n", "\n", "✅ Analysis complete!\n", "\n", "📊 Category Counts:\n", "- Other: 3\n", "- News: 2\n", "- Technology: 2\n", "- Comedy: 1\n", "- Meme: 1\n", "- Movie: 1\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAMVCAYAAABqdZdfAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAymVJREFUeJzs3Xl4XGXd//HPmZnsa9OmTfe9TQqUlpalFGjhYRUVBEWxKCCIyqaoIPp7ZFEREBRlEQWxKIKAIrg8snZlpy10X9MlXZNm37c55/79MUmatEmbpJmcMzPv13XlanNmzsx30ulkPnPf9/e2jDFGAAAAAACgz/ncLgAAAAAAgGhF6AYAAAAAIEwI3QAAAAAAhAmhGwAAAACAMCF0AwAAAAAQJoRuAAAAAADChNANAAAAAECYELoBAAAAAAgTQjcAAAAAAGFC6AYAj7Isq8OXz+dTRkaGTjnlFP36179Wc3Oza7XNnTtXlmVpx44dYb2f9evX66abbtKxxx6rjIwMJSQkaPjw4frsZz+rP//5z2pqagrr/UerHTt2HPL8SkhI0ODBgzVjxgx94xvf0JtvviljzGHPnzt3bv8WfpCrrrpKlmVp8eLFHY6PGTNGlmW5U1Q7ixcvlmVZuuqqq9wuBQDgIkI3AHjclVdeqSuvvFLz5s3T1KlTtWzZMt1yyy264IILFAwG3S4vLIwx+vGPf6ypU6fq0UcfVXV1tc4880xdcsklGjt2rF577TVdeeWVysvL6/favBI4pdAHM2PGjOn1+SkpKW3Pr8suu0wnn3yyysrK9MQTT+jcc8/ViSeeqM2bN/ddwe3cddddsixLTz/9dFhuvz9Ew2MAAIRfwO0CAACHd/Ab+g8//FBz587VggUL9Pzzz+uKK65wp7Aw+tGPfqT77rtPQ4YM0R//+Ed96lOf6nB5eXm5HnzwQT3wwAMuVRgdBg0a1GlgXLVqlb773e9q4cKFOuOMM7Rs2TKNHDmy7fLhw4drw4YNSk5O7sdqD3Xvvffq9ttv16hRo1ytoysnnXSSNmzYoIyMDLdLAQC4iJFuAIgwJ598ctt01ddff93dYsLgo48+0v3336+kpCQtWrTokMAtSQMGDNA999yjRYsWuVBh9Dv++OP1xhtv6Nxzz1VRUZG+/e1vd7g8Li5Oubm5rofdoUOHKjc31/Xw35Xk5GTl5uZq6NChbpcCAHARoRsAItAxxxwjSdq/f/8hlxlj9Ne//lVnnXWWBgwYoMTEROXl5emuu+5SXV1dp7cXDAb1+OOPa9asWUpPT1dSUpKmTZumX//61z2awl5QUKBvfetbmjRpkpKTk5WVlaVjjjlG3/jGN7Rp06Zu3cYvf/lLGWN08803H3H6+OzZsw85tn79es2bN09Dhw5VfHy8hg8frq9+9aud3n/7NbdlZWX61re+paFDhyohIUHHHnus/vjHP3a4/l133aWxY8dKkpYsWdJhTfTB63bLysr0wx/+UFOmTFFSUpIyMjJ01lln6T//+c8hdbSfsl5fX6/bb79do0ePVkJCgiZMmKD777+/w/rqp59+um3NckFBQYc6+mrau9/v16OPPirLsvTKK69o586dndZ7sP/+978655xzNHz4cCUkJGjYsGE67bTTdPfdd7ddZ8yYMW3fX3311R3qb12f3foY77rrLm3evFlf+tKXNGTIEPl8Pr3yyiuSul7T3coYo9/85jeaMmWKEhMTNXz4cN18882qqKg45LqH61PQ2ePtzmM43JruYDCoRx55RDNmzFBqaqpSU1N10kkn6fHHH5dt24et75VXXtEpp5yilJQUZWVl6fLLL9fu3bs7/RkAANzH9HIAiEDV1dWSpMGDB3c47jiOrrjiCv31r39VamqqZs6cqQEDBmj58uW6++679eqrr2rx4sVKSkpqO6e+vl4XXnihFi1apKysLJ1yyilKTEzUhx9+qFtuuUWLFi3Syy+/LJ/v8J/T7tq1SyeccILKyso0ceJEfepTn5Jt2yooKNCTTz6pWbNmafLkyYe9Dcdx9Nprr0mSvvzlL/f457JgwQJ95jOfUX19vaZPn665c+dq48aNeuaZZ/Tyyy/rv//9r04//fRDzquoqNCsWbNUU1Oj008/XSUlJVq6dKmuueYaOY6ja6+9VpI0bdo0XXrppXrppZc0ZMgQnX/++W23cdppp7X9ffPmzTr77LO1a9cujRkzRuedd56qq6v1wQcf6DOf+YweeOABff/73z+kjqamJp177rlav3695s6dq9raWi1ZskS33367qqur9bOf/UySNGHCBF155ZX605/+pJSUFH3+859vu43c3Nwe/9y6MnHiRM2YMUPLly/XkiVL9JWvfOWw13/sscd04403yu/3a/bs2ZozZ45KSkq0YcMG3XXXXbrzzjslSZ///Of11ltvadWqVZo9e7YmTJjQdhs5OTkdbnPTpk068cQTNXDgQJ155pkqLy9XXFxct+q/6aab9MQTT2ju3Lk67rjjtGTJEj3yyCNasmSJ3n77baWnp/fwJ3JATx7DwWzb1kUXXaT//ve/Sk9P1znnnCNjjBYuXKjrr79eb775pv7+9793+n/ut7/9rX71q1/p9NNP16c+9Sl9+OGHev7557VixQqtWrWqw/9tAIBHGACAJ0kyXb1Mn3HGGUaS+ctf/tLh+C9+8QsjycydO9fs27ev7XhjY6O55pprjCTzgx/8oMM5119/vZFkvvjFL5qKioq241VVVeZTn/qUkWQef/zxDufMmTPHSDLbt29vO3bHHXcYSebGG288pN6CggKTn59/xMe8ZcsWI8kkJCSYYDB4xOu3V1NTY4YMGWIkmUcffbTDZb/61a+MJDNixAhTX1/fdnzRokVtP+cvfelLpqGhoe2yl19+2Ugyo0aN6nBb27dvN5LMnDlzOq0jGAya4447zkgyv/jFL4xt2x0e39ixY43f7zdr1qw55DZbb7eysrLtsmXLlhm/32+Sk5NNdXV1h/uSZEaPHt3tn9HB99edc6+99lojyfzwhz885PyDfwajRo0ylmWZZcuWdTjuOI5ZtGhRh2N33nmnkWTmz5/f6f3Onz+/7Wdy4403dvp8uPLKK42kQ2579OjRRpJJT083y5cvbzteXV1tzjrrLCPJfPvb3+5wTmfP6SM93iM9htbn15VXXtnh+IMPPmgkmWOOOcYUFha2Hd+7d6+ZPHmykWQeeeSRTutLTk427733Xtvx2tpac+qppxpJ5qmnnuq0DgCAu5heDgARwnEcbd26Vd/61re0dOlSXXTRRfriF7/YdnkwGNQvfvELpaSk6Pnnn+8w2hYfH69HHnlEOTk5euKJJ+Q4jqTQ9PQnn3xSI0eO1Pz58zs0fEpLS9NTTz2l+Ph4Pf7440esr7i4WJJ09tlnH3LZqFGjNH78+CPeRmlpqaTQmm2/33/E67f34osvqqioSLNmzdINN9zQ4bJbbrlFM2bM0O7du/XSSy8dcm56eroeffRRJSQktB27+OKLdeyxx2rnzp092hrt3//+t9asWaNLL71Ut956a4fRygkTJuiXv/ylbNvWk08+eci5Pp9Pv//97zuMwM6cOVMXXHCB6urqtHz58m7X0VcGDRokKdS87kiKi4uVmZmpmTNndjh+NNPes7Ozdf/99/f4+SBJN954o2bMmNH2fWpqqh555BFZlqWnnnpKDQ0NvarpaD388MOSpF/96lcaMmRI2/GhQ4e2NQf8zW9+0+m5t9xyi2bNmtX2fXJysr773e9KkpYuXRqukgEAR4HQDQAe17pO1O/3a8KECfrd736nr3/963r55ZcVCBxYJfTxxx+rpKREp556aoc38q2SkpI0Y8YMlZeXa8uWLZJCa06bm5t1/vnndzotNScnRxMnTtSaNWtUX19/2Dpbw82PfvQj/ec//+n3QPP2229LkubNm9fp5a1d3luv196MGTM0cODAQ45PmjRJkrRv375u1/HGG29Iki655JJOL2+d3v7RRx8dctno0aM7nYLfmzr6imlZS96dfa9bn1/XXHON1q1b1yf3f/bZZ/e6UdqXvvSlQ45NmTJFxx9/vGpqavTJJ58cbXk9tnPnTu3cuVPZ2dk699xzD7n805/+tDIzM5Wfn6/CwsJDLu/sHDefHwCAIyN0A4DHte6j/MUvfrFtve6TTz6pP/3pTx2u1zoa++abb3Zo6tT+6//+7/8kSSUlJR3OefLJJ7s8Z926dTLGqKys7LB1XnXVVbrsssu0fv16feYzn9GAAQN0xhln6Oc//3mn4aEzrcG3vLy802ZSh7N3715J6nLf6tbje/bsOeSyESNGdHpOWlqaJKmxsbHbdbT+TOfNm9fpzzM7O1vSgX+DcNXRV1rrzMrKOuJ1H3vsMY0dO1Z//OMfdeyxxyonJ0df/OIX9cILL/T437PV0XRIHz16dKfHW58Lrc+Z/tR6n13VZllW22Xdfa66+fwAABwZjdQAwOMO3kf5gQce0G233aYbbrhBZ555Ztsb9NYp4xMmTOi0q3d7reG29Zxp06bp+OOPP+w57aded8bv9+uFF17Q7bffrn/+859auHChPvzwQ7399tu677779Nprr+nUU0897G2MGzdO6enpqqqq0rp16zR16tTDXr8nDjdSe6QmcT3R+jM9//zzO51x0Kp12na46ugrraPBU6ZMOeJ1p06dqvXr1+u1117Tf//7Xy1evFgvvviiXnzxRc2aNUuLFy9WfHx8j+4/MTGxV3X3pdZ/0/7SX89VAED/IHQDQIS59dZb9dZbb+mNN97Q3Xff3batVesIWG5u7iFBvSut55x22ml65JFH+qS+6dOna/r06brrrrtUVVWlu+66Sw899JC+853vdDqluj2fz6fzzz9fL774op577rkehe5hw4ZJCm2h1ZnWEejhw4d3+zZ7o/Vneu211+rSSy8N632F25YtW/TJJ5/I5/PpjDPO6NY5iYmJuvjii3XxxRdLktatW6cvf/nLev/99/WHP/xB119/fRgr7qigoEDHHXdcp8elA88ZSW0fBtTU1Bxy/V27dvVZTUd6nra/LNzPVQBA/+DjUgCIQPfdd58k6Zlnnml7g37iiScqIyNDS5YsOeJU8FZnnnmm/H6//vOf/6i5ubnP60xPT9e9994ry7K0du3abp3z3e9+V5Zl6eGHH9aGDRsOe9333nuv7e+ta6X/+te/dnrdv/zlLx2u11ut4ayr/cvPOeccSdLLL798VPfTHXFxcT3aR70nbNvWjTfeKGOMLr300i6nvh/JMccc09bYrv1z4Eg/x77w4osvHnJs48aNWrlypVJTUzVt2rS240OHDpUU2u7tYG+++Want9+bxzBq1CiNGjVKxcXFWrBgwSGX/9///Z/Ky8s1YcKEI249BgCIDIRuAIhA06dP18UXX9zWsVwKTf++7bbbVF1drUsuuUTbtm075Lw9e/bomWeeaft++PDh+trXvqYdO3bo8ssvV1FR0SHn5Ofnd9rx+2DPPPNMp8H61VdflTFGI0eO7NZjO/nkk3Xbbbepvr5eZ511lv773/8ecp3KykrdeeedOvPMM9uOXXbZZRoyZIjeeecdPfHEEx2u//DDD2v58uUaPnz4UY8+Dxo0SHFxcdq6dWun65QvvfRSTZkyRc8++6x++tOfHrLO1hijd999V+++++5R1SGFRk2LiopUUVFx1LfV3urVq3XuuefqjTfe0NChQ/XrX//6iOfU1dXp4YcfPqSW9nuvt38OtI74btq0qc/qPtgjjzzSoVlaXV2dbrrpJhljdPXVV3doHjhnzhxJ0i9/+UvV1dW1HV+4cGGXj7+3j+Gmm26SFPqAqbXrvyQVFhbq1ltvlSR9+9vf7tFtAgC8i+nlABCh7rrrLv3zn//UH//4R/34xz9WTk6Obr/9dm3cuFHPPPOM8vLyNH36dI0dO1ZNTU3atGmT1q9fr6lTp+orX/lK2+385je/0Y4dO/TSSy/ptdde07Rp0zRq1CjV1tZq/fr1ys/P10UXXXTEsPrSSy/pq1/9qsaPH6/jjjtOSUlJ2r59uz788EP5fD797Gc/6/Zju/feexUIBHTvvffqwgsv1OjRozV9+nQlJSVp9+7d+vDDD9XU1KSJEye2nZOSkqJnn31Wn/nMZ/SNb3xDTzzxhCZNmqSNGzfqk08+UWpqqv76178e9Rrh+Ph4nX/++fr3v/+t448/XieccILi4+M1e/ZsXX311QoEAnrllVd03nnn6Y477tCjjz6qqVOnavDgwSopKdHKlSu1f/9+PfTQQ0dce38kn/3sZ/XII4/ohBNO0KmnnqrExERNnjy5LbgdSUlJia666ipJoZHtyspKrVu3ru0DmxNPPFHPPfdch2nYXWlqatK3v/1tff/739eMGTM0ZswYNTU1admyZdq1a5fGjBmj6667ru365557rhITE/XQQw9p7dq1GjZsmCzL0q233tppB/feuOKKK3TyySfrrLPOUkZGhpYuXarCwkIdc8wx+ulPf9rhupdffrl+8Ytf6L333lNeXp5OPPFE7d69W8uWLdN3v/tdPfjgg4fcfm8fwy233KKFCxfq1Vdf1cSJE3XWWWfJGKMFCxaourpaF198cb9OwwcAhJmLe4QDAA5DkjnSy/Qll1xiJJlbb721w/F//vOf5sILLzSDBw82cXFxZvDgwWbGjBnmtttuMytWrDjkdoLBoPnTn/5kzjrrLJOVlWXi4uLMsGHDzKxZs8zdd99tNm3a1OH6c+bMMZLM9u3b244tWbLE3HDDDWbatGlm4MCBJjEx0YwbN8586UtfMsuWLevVz2Dt2rXmhhtuMHl5eSYtLa2trs985jPmL3/5i2lqaur0nMsvv9wMGTLExMXFmaFDh5orrrjCbNy48ZDrLlq0yEgyV155Zaf3f+WVVxpJZtGiRR2OFxUVma985SsmJyfH+P3+Tm+joqLC/OxnPzMnnHCCSU1NNYmJiWbMmDHmvPPOM4899pgpLi5uu+727duNJDNnzpxO67jzzjuNJDN//vwOx2tqasyNN95oRo4caQKBwGFvo73W+2v/FRcXZwYNGmROOOEEc91115k33njDOI5z2PPb31dzc7N57LHHzCWXXGLGjx9vkpOTTWZmppk6daq5++67TWlp6SG38/rrr5vZs2eb1NTUtjpaf9bz5883ksydd97Z5ePo6t9n9OjRRpKxbds8+OCDJjc31yQkJJihQ4eaG264wZSVlXV6e7t37zaXX365GTBggElKSjIzZ840f/vb3w7773O4x3C451dzc7P5zW9+Y6ZPn26Sk5NNcnKymTlzpnnsscdMMBg85Pqd/Z9rdaTnDwDAXZYxLRtwAgAAAACAPsWabgAAAAAAwoTQDQAAAABAmBC6AQAAAAAIE0I3AAAAAABhQugGAAAAACBMCN0AAAAAAIQJoRsAAAAAgDAhdAMAAAAAECaEbgAAAAAAwoTQDQAAAABAmBC6AQAAAAAIE0I3AAAAAABhQugGAAAAACBMCN0AAAAAAIQJoRsAAAAAgDAhdAMAAAAAECaEbgAAAAAAwoTQDQAAAABAmBC6AQAAAAAIE0I3AAAAAABhQugGAAAAACBMCN0AACAsnn76aWVmZrpdBgAAriJ0AwCAw9q1a5e+9rWvadiwYYqPj9fo0aP17W9/W6WlpW3XGTNmjH7961+7VyQAAB5F6AYAAF3atm2bZs6cqS1btuivf/2r8vPz9bvf/U4LFizQrFmzVFZW1u81NTc39/t9AgDQW4RuAADQpRtuuEHx8fF64403NGfOHI0aNUoXXHCB3nrrLe3Zs0f/7//9P82dO1cFBQW65ZZbZFmWLMvqcBuvv/668vLylJqaqvPPP1/79u3rcPkf/vAH5eXlKTExUbm5ufrtb3/bdtmOHTtkWZZeeOEFzZkzR4mJiXr22Wf75bEDANAXAm4XAAAAvKmsrEyvv/667rnnHiUlJXW4LCcnR/PmzdMLL7ygLVu2aNq0abruuuv09a9/vcP16urq9OCDD+qZZ56Rz+fTFVdcoe9///ttwfnZZ5/VHXfcoUcffVTTp0/XJ598oq9//etKSUnRlVde2XY7t99+u375y19q+vTpSkxMDP+DBwCgjxC6AQBAp7Zs2SJjjPLy8jq9PC8vT+Xl5bJtW36/X2lpacrJyelwnebmZv3ud7/T+PHjJUk33nijfvKTn7Rdfuedd+qXv/ylLrnkEknS2LFjtX79ev3+97/vELq/853vtF0HAIBIQugGAACHZYzp9bnJycltgVuShg4dqv3790uSamtrtXXrVl1zzTUdRsiDwaAyMjI63M7MmTN7XQMAAG4idAMAgE5NmDBBlmVpw4YN+tznPnfI5Rs2bNCAAQOUnZ3d5W3ExcV1+N6yrLYQX1NTI0l68skndfLJJ3e4nt/v7/B9SkpKrx4DAABuo5EaAADo1MCBA3XOOefot7/9rerr6ztcVlhYqGeffVZf/OIXZVmW4uPjZdt2j25/yJAhGjZsmLZt26YJEyZ0+Bo7dmxfPhQAAFxD6AYAAF169NFH1djYqPPOO09Lly7Vrl279Nprr+mcc87R8OHDdc8990gK7dO9dOlS7dmzRyUlJd2+/bvvvlv33nuvHn74YW3evFlr1qzR/Pnz9atf/SpcDwkAgH5F6AYAAF2aOHGili9frnHjxumyyy7T+PHjdd111+nMM8/U+++/r6ysLEnST37yE+3YsUPjx48/7HTzg1177bX6wx/+oPnz5+u4447TnDlz9PTTTzPSDQCIGpY5mu4oAAAAAACgS4x0AwAAAAAQJoRuAAAAAADChNANAAAAAECYELoBAAAAAAgTQjcAAAAAAGFC6AYAAAAAIEwI3QAAAAAAhAmhGwAAAACAMCF0AwAAAAAQJoRuAAAAAADChNANAAAAAECYELoBAAAAAAgTQjcAAAAAAGFC6AYAAAAAIEwI3QAAAAAAhAmhGwAAAACAMCF0AwAAAAAQJoRuAAAAAADChNANAAAAAECYELoBAAAAAAgTQjcAAAAAAGFC6AYAAAAAIEwI3QAAAAAAhAmhGwAAAACAMCF0AwAAAAAQJgG3CwAAAK1My1dvWL28DAAAhBOhGwCAo9Yali0dOeAaSU67L7vdl9PuT6fdbeoIf3b3OgFJ/nZfXU14M+3+7M5jAgAAXSF0AwDQpfYjzweHT0dSs6Smdl/N6hicO/uztyPZ4dI+hAfa/dn+K67lq/Xy9mG9Jx84AAAQeyxjjNd++wMA0E8cdR4WbR0apg/+0+6/Mj3HJym+5Suh5SteUmLLn/521yWUAwBiG6EbABADDg7XtqQGSfUtfx4cqvnVeHT8OhDEDw7lceo4Ut7VBx8AAEQHQjcAIIocHOAchYJ161dr0G52pTq0ilPHUJ4oKaXl71LHKf0AAEQ2QjcAIAIdHMochQJ1nQ4Ea8J15PFJSpKU3O4rUQdGxhkVBwBEHkI3AMDjDg7YDZJq1HF6eJMLdaF/WAoF74PDeOu6cUbFAQDeRugGAHhM+xDlSKpVKGTXtPw9lhuY4YB4dQzhyQpNW5dCz5uutkMDAKB/EboBAC5rH5Ca1DFg17lVFCJSQKG14WktX0k68OENIRwA4A5CNwCgH7UfxTYKTQ+v1oHRbNZgoy/5JaUqFMDTFQrhEiEcANCfCN0AgDBqH7JtHRjFrlFoFNtxqS7EJr8OjIK3joRLhHAAQDgRugEAfax90K6TVCGpUkwVh/cE1HEkPLHlOCEcANB3CN0AgD5gdGA0u0qhkF0pKehmUUAPdRbC6Y4OADg6hG4AQC+0DyINOjCaXeNWQUAYxEvKlDRAoQZtrQjgAIDuI3QDALqpdcqto1Dzs9bRbPbIRiwIKBTAMxUaCffpwAwPAAC6RugGAHSh/Wh2kw6MZle3uwyIRT5JGQoF8AyFGrQRwAEAnSN0AwAO0hoe6iWVKhS0G1ytCPAuS6GR70yFpqEHRAAHALRH6AYA6EBIaJJUplDYJmgDPZeiAwE8QTRiAwAQugEgZrXvOF7W8kUjNKDvJCoUvgcotCc4I+AAEIsI3QAQU0y7PysVGtGuEmu0gXBLljSw5Ys14AAQSwjdABD12r/M1ygUtMsV6kIOoH9ZCk0/H6TQWvD2xwEA0YjQDQBR6+CGaGWSml2tCEB78QqNfA9q+Tuj3wAQjQjdABBV2jdEaw3aNEQDvC9VofA9QAeCNwEcAKIBoRsAokLrS3mlpGKF1mkDiDw+SVkKBfAUMfoNAJGP0A0AEav1zXhQoaBdLKaPA9EkUQemn7P/NwBEKkI3AESc1jfe1QoF7QrRfRyIdhmSslv+JHwDQCQhdANARGi/1VeJQmGbtdpA7EmQNEShEXBLhG8A8D5CNwB4WvvGaEUKNUezXa0IgBcEFBr5HqzQvt8SARwAvInQDQCe1H4K+X6FppADwMEshUa9hyi0Bpyp5wDgNYRuAPCU1pfkMoVGtutdrAVAZMlQKHynifANAN5B6AYATzCSHIWCdrFCHckBoDeSFZp2ntXyPeEbANxE6AYAV7WG7UKFppE77pYDIIrEKRS+sxXa/1sigANA/yN0A4ArjEIN0YpE2AYQXj6F9voeIileTD0HgP5F6AaAftP6ckvYBuCWAZKGSkoS4RsA+gehGwDCrn3YLlRozTZhG4CbsiQNU2jkWyJ8A0D4ELoBIGwI2wC8bpBC4TvQ8j3hGwD6GqEbAPpc68tqUAfCNi+1ALzKUqjZ2lBJfhG8AaBvEboBoM8QtgFEMp9CzdaGtPyd8A0AfYHQDQB9wigUtvdJKhFhG0Dk8kvKUWi7MUuEbwA4OoRuADgqrfts71OoGzkvqQCiRZxC4Tu75XvCNwD0BqEbAHql9aWzRNJehUa5ASAaxSvUbC2r5XvCNwD0BKEbAHqkdV/bakm7JNW7Ww4A9JtEScMlZYo9vgGg+wjdANBtRlKTpN2SKtwtBQBckyxphKQ0Eb4B4MgI3QBwRKzbBoBDZUoaqdDab4I3AHSF0A0AXWLdNgAcnqVQs7Uc0ekcADpH6AaAQ7BuGwB6Jl6hKecDxJRzAOiI0A0AHbBuGwB6L03SKEkJLd8TvgGA0A0Akli3DQB9abBCnc6Zcg4AhG4AMa51GmSxWLcNAH0pTqFGa0w5BxDbCN0AYljrVPLtkmpdrgUAolW6QlPO40XwBhCLCN0AYlDry16RQqPbvAwCQHi1djkf2u57AIgNhG4AMcZIapC0Q1Kdu6UAQMxJkDRaoYZrTDkHEBsI3QBiROtL3V6FRrh56QMA9wxQaMq5XwRvANGO0A0gBhiFRrV3KDTKDQBwX0ChUe9MMeoNIJoRugFEMdPytUehbcAAAN6TpdCot08EbwDRiNANIAq1jphUSyqQ1OhuOQCAI4iTNFas9QYQjQjdAKKMkeRI2i2pxOVaAAA9ky1phEKhm+ANIDoQugFEidaRkUqFRreb3S0HANBLCQqNeieL4A0gGhC6AUQBI8mWtEtSmcu1AAD6Ro6kYS1/J3wDiFyEbgBRoFKhzuRBl+sAAPStJIVGvRNF8AYQqQjdACJU60vXbtGZHACimaXQiPeQdt8DQOQgdAOIQEahNdtbFdp/GwAQ/VIUGvWOF8EbQCQhdAOIIK3N0soUapbmuFsOAKCf+SQNlzRYbC0GIFIQugFECNPytUtsBQYAsS5NoVHvgAjeALyO0A0gAhhJjZK2Sap3uRYAgDcEJI1XaNo5wRuAdxG6AXhY69TBEoVGuJlODgA42HCFthdjujkAbyJ0A/Co1unkBWLvbQDA4WVKGqPQmm+CNwBvIXQD8CAjqUGh7uSNLtcCAIgMCZImtPxJ8AbgHYRuAB7SOjVwv0L7b/PyBADoCZ+k0ZKy3C4EANoQugF4hFFozfYOSRWuVgIAiHTZkka2/J1RbwDuInQD8AAjqU6h7uRNLtcCAIgOKQp1N2dbMQDuInQD8IASSTvFdHIAQN8KSBonKVUEbwBuIXQDcEnrS88eSUVuFgIAiHrDJA0V24oBcAOhG4ALWrcD2yap0uVaAACxIUPSWLGtGID+RugG0M+MpGZJ+ZLqXa4FABBb4hXaVixRBG8A/YXQDaAfGUm1Cu2/HXS5FgBAbLIU2lZsoNuFAIgRhG4A/ahUUoFomAYAcB/rvAH0D0I3gDBrfTOzWzRMAwB4y0CFRr0lgjeAcCF0Awij1oZp2yVVuFsKAACdSldoP29LBG8A4UDoBhAmRqF121tEwzQAgLclSZqo0L7eBG8AfYvQDSAMjKQ6hTqU0zANABAJ4hQK3nQ2B9C3CN0AwqBM0g7RMA0AEFl8Ck01TxPBG0BfIXQD6COtDdP2SCp0uRYAAHrLkjRK0iC3CwEQJQjdAPpA68vIdknlbhYCAEAfGarQtmJsKQbg6BC6ARyl1g7lWyVVuVwLAAB9iS3FABw9QjeAo2AkOQo1TKtxuRYAAMIhTaF13j4RvAH0BqEbQC8ZSbakzWJLMABAdEuUNElsKQagNwjdAHqhdQ/uzZIaXK4FAID+wJZiAHqH0A2gh4ykJoUCd5PLtQAA0J98CgXvFBG8AXQXoRtADxiFRrY3KzTSDQBArPFJmiApVQRvAN3hc7sAAJHCSKqTtEkEbgBA7HIkbVGogShjVwCOjNANoBuMQm8uNivUPA0AgFhmFAre1SJ4AzgSQjeAIzAK7b+9RaFP9wEAQOj3Y75CvyMJ3gC6xppuAIdhJJVL2u52IQAAeJQlaZykDLHGG0BnGOkGcBglInADAHA4RtI2SZVixBtAZxjpBtCFQkl73C4CAIAIMk5SphjxBtAeI90AOrFHBG4AAHpqm0LLshjTAnAAoRvAQfYpNMoNAAB6brukMhG8AbQidANoYSTtl7TX7UIAAIhwOySViuANQCJ0A5AUelNQKmmX24UAABAlChRqSErwBmIdoRuIeUZShUJvDgAAQN/ZqVDwBhDLCN1ATDOSqsS2YAAAhMtOhZZvMeINxCpCNxCzjKRaSVvFGwEAAMJpl2iuBsQuQjcQk4ykeklbxBsAAAD6ww6FZpfxexeINYRuIOYYSQ2SNktyXK4FAIBYsk1SnQjeQGwhdAMxxUhqUihw2y7XAgBArHEk5Sv0u5jgDcQKQjcQM4ykoEKBO+hyLQAAxKr2v4sJ3kAsIHQDMcEoNLK9SaFP1wEAgHuaFOqr4ojgDUQ/QjcQ9YxCv9Q3S2p0uRYAABBSr9BUcyOCNxDdCN1AVGv9Rb5FoV/uAADAO2okbXe7CABhRugGolbrp+b5Cu3HDQAAvKdC0k63iwAQRoRuIGpZCu0JWu1yHQAA4PBKJO11uwgAYULoBqLWXkllbhcBAAC6ZZ+kYrG+G4g+hG4g6hhJpQr98gYAAJFjp6RKEbyB6ELoBqKKUWj9doHbhQAAgF7ZplCDNYI3EC0I3UDUMArt+9m6/QgAAIg8RtJWSQ3i9zkQHQjdQFQwkmyFtgazXa4FAAAcndbf6UERvIHIR+gGIpwxRqFO5bskNbpcDQAA6BvNCo14SwRvILIRuoEIZ1mWjOPImJGSUt0uBwAA9JlahZqrWW4XAuAoELqBCGaMkbN1s+wlb0lBR8ZMkjTQ7bIAAECfKRFbiQGRjdANRCjjODLFRXI2rpPqamW/9apUWyNpjKThLlcHAAD6zi5JdSJ4A5HJMqEFoQAiiHGcUNB+d7EUDHa4zDfjZFlDhkqqlGVtl+S4USIAAOhTcZLyJAXEdHMgsjDSDUQYY4xkB2V/9N4hgVuSnBUfytmyUVKGjMlV6Jc0AACIbDRWAyIVoRuIQM6Kj6T6ui4vN1s2yl7xoaQEGZMnKbnfagMAAOFSK6lAjHQDkYXQDUQYZ9N6mdLiI1+xaJ/sJQslWzJmsqQBYa8NAACEW6lorAZEFkI3ECGM48gp2iezdXP3T6qtlr3gNam+XtI4SUPDVR4AAOg3uxQa9SZ4A5GA0A1EAOM4UmODnJUren5yMCh70RtyioskDZMxY8W0NAAAIplRaH13UARvwPsI3YDHhTYYMLKXfyAFm3t9O85H78neulnSgJbp5oG+KhFAGDz++N81deqXlJ4+R+npczRr1tV69dV32y5vaGjUDTfcr4ED/0epqafr0ktvVVFR6WFv0xijO+74nYYOPU9JSbN19tnXa8uWnW2XNzY26Stf+bHS0+do0qRL9NZbH3Y4/4EH/qybbvpF3z5QAL0UlJTf8neCN+BlhG7A4yzLkrNmpVRVedS3ZTauk/3JcklJMmaKpKSjvk0A4TFixGDdd9+NWrHiGS1f/medddZMXXTR97RuXah78S23/Er//vdS/e1v92nJkie0d2+JLrnk1sPe5i9+8Sc9/PDz+t3vfqgPP3xaKSmJOu+8m9TQ0ChJeuKJf2jFio16//0/6rrrPqcvf/l/1bqz6Pbte/Tkk6/onnuuD+8DB9ADdaKxGuB97NMNeJgxRmbXjlDo7ktpGfLPPkPy+WRZ2yQdfaAHEH5ZWWfpgQdu1uc/f7ays8/Wc8/9TJ///NmSpI0bdygv7/N6//35OuWU4w451xijYcPO1/e+d4W+//2vSJIqK2s0ZMi5evrpO/WlL52n66+/T+npKbrvvptUX9+g5OTTtH//m8rOHqDzz79J3/jGJfrc587s18cMoDtGSsoW4RvwJka6AY8yjiNVV8pZt7rvb7y6UvZbr0sNDTJmvKQhfX8fAPqMbdt6/vnXVVtbr1mzpmrFig1qbg7q7LNPbrtObu4YjRqVo/ff7/w1Y/v2PSosLNXZZ5/UdiwjI1Unn3ys3n9/jSTp+OMn6p13Vqq+vkGvv/6Bhg4dpEGDMvXss68qMTGewA141i5JNWKaOeBNLOoEPMgYI9m27OUfSo4TnjsJNsle+Lr8p5wuDRwhYxJlWTvFL2zAO9asydesWVeroaFJqalJevnlBzRlyjitXLlZ8fFxysxM63D9IUOyVFjY+bru1uNDhgzs8pyvfe0irV6drylTLtOgQZl68cX7VF5epTvu+J0WL/69/vd/f6vnn39D48eP0B//eIeGDx8chkcNoHe2SZqi0Nt7RrwBLyF0Ax7lfLJMqq8L+/3YH7wt37HHyxo1tiV4t3ZDBeC2yZNHa+XK51RZWaO//32BrrzyLi1Z8kTY7i8uLqDHHvtBh2NXX323br75S/rkk0165ZXFWrXqr/rFL/6sm29+QC+99EDYagHQU0FJOyRNdLkOAAdjejngMcYYmfxNMsVF/XafztpVsteslJQsY/IkJfbbfQPoWnx8nCZMGKkZM/J077036vjjJ+k3v/mrcnIGqqmpWRUV1R2uX1RUppycgZ3eVuvxgzucH+6cRYuWa926rbrxxsu0ePEKfepTs5WSkqTLLjtbixd/3AePEEDfqpJUJGatAd5C6AY8xDiOVFkhZ8vG/r/zXTtkv79UcnwyJldSev/XAOCwHMdRY2OzZszIU1xcQAsWfNR22aZNO7RzZ6FmzZra6bljxw5XTs5ALViwrO1YVVWNPvxwrWbNOrTxWuuWZL///Y/k9/tl246am0OzYJqbg7Jtu48fHYC+sUdSgwjegHcQugGPMMZIxpH9yTLJrU0FystlL3xDamqWMRMksV4TcMsPf/ioli79WDt27NWaNfn64Q8f1eLFKzRv3vnKyEjVNddcpO9+9yEtWrRcK1Zs0NVX/0SzZk3t0Lk8N/dSvfzyIkmh7Qe/853L9bOfPaV//WuJ1qzJ11e/eqeGDcvWxRfPPeT+f/rTP+hTn5qt6dNzJUmzZx+vf/xjkVav3qJHH31Rs2cf3y8/BwA9ZSRtd7sIAO2wphvwCMuyZK9ZJdXVultIU6Pst16Vf/ZcKXNkuwZrAPrT/v1l+upX79S+fSXKyEjV1KkT9frrj+icc06RJD300Hfl8/l06aW3qbGxSeedN0u//W3H9dibNhWosrKm7fvbbrtStbUNuu66n6uiolqnnTZNr732sBITEzqct3Ztvl588S2tXPlc27HPf/5/tHjxCp1++rWaPHm0nnvunjA+egBHp17SboW2EgPgNvbpBjzAOI5M4d5Q8zQP8U09QdaIUZJqWhqsMZ0UAIDIMVFSmuhmDriL6eWAy4wxUlOjnDUr3S7lEM7qj+WsXyMppaXBWsKRTgEAAJ6xXaEPzBljA9xE6AY8wP5kmRRsdruMTpkdW2V/+K5kAi3BO+2I5wAAAC9o3UaMkW7ATYRuwEXGGJmtm6Wy0iNf2U2lJbIXvSk1B2XMREmD3K4IAAB0S6WkYjHaDbiH0A24xDiOVFUpZ/MGt0vpnoZ62Qtek6qrJI2WNMLtigAAQLfsltQkgjfgDkI34ILQ9mBG9scfubc9WG84juy3F8rZu1vGDG7ZVoyXEQAAvM2RtM3tIoCYxbtlwAWWZclZ64HtwXrJ+WSZnE3rJaXLmFxJ8W6XBAAADqtO0h4x2g30P0I30M+M48jZXyizu8DtUo6K2bpZ9vL3JRPf0mAtxe2SAADAYRVJqhHBG+hfhG6gHxljJMeRs/oTt0vpG/uLZC9ZIAUdGTNZUpbbFQEAgMPartB0c4I30F8I3UA/sixLzvrVUmOD26X0nbraUIO12hpJYyUNc7siAADQpWaxjRjQvwjdQD8xjiOnpFhmV2RPK++Ubcte8pacon0yJkfGjBcvLwAAeFWFpDIx2g30D94VA/2gtVu5s/pjt0sJK2f5B3LyN0vKaJluHud2SQAAoFO7JNkieAPhR+gG+oFlWXI2rpXq69wuJezM5vWhrdCU2NJgLdntkgAAwCGCCgVvppkD4UboBsLMOI5MeZnMjhjaH7Nwr+y3F0q2Wka8M92uCAAAHKJMUpUY7QbCi9AN9AN71Qq3S+h/1dWhBmv19ZLGS8pxuyIAAHCIAhG6gfAidANhZIyRs2l9S2fvGBQMyl70hpyS/ZKGy5gxYhobAABe0iRprwjeQPgQuoEwMY4jVVXKbM93uxTXOR++K2dbvqSslunmAbdLAgAAbYok1YvgDYQHoRsIF6tlWrnhF5gkORvWyF71saSklgZrSW6XBAAA2tBUDQgXQjcQBsYYma35UnWV26V4y56dst9dIjk+GZMrKcPtigAAgDJlzDhJJrTNKYA+RegG+pgxRmpslJO/0e1SvKmyQvbC16XGRhkzXtIQtysCACBGxcuYCZLGS3azzM4Fkt1A8Ab6mGX4XwX0OXvFhzKFe90uw/P8s86QlTVQxpTIsnaKtWQAAPSXITJmWOivZeul0jWhv6cMlzX8DPfKAqIQoRvoQ8ZxZMpK5Xz4jtulRAzfsdNkjRojqUaWtVWS7XJFAABEsxQZM1pSotRYLu1eLDmNHa8y7AwpZagsi0mxQF8gdAN9yDiO7KULYneLsN4aNVb+Y6dKapZl5UtqcLsiAACijE/GDJeULZmgVLRMqi7o/KqBFGnMhbJ8/n6tEIhWhG6gj4Sap22Rs2md26VEpgFZ8p9ymmSpZcS72u2KAACIEpkyZpSkgFSzS9r3viTn8KcMyJMGHS/LoqM5cLQI3UAfaG2eZi9+Q7KZHt1rCYnyn36mFJ8gy9olqdjtigAAiGDxMmaULCtDprlO2rs0NKW8W3zS2AulQDLTzIGjROgG+gjN0/qIZck/e66sjEwZs78lfAMAgJ7polFaT9BUDegThG7gKNE8LTx8x8+QNXykpGpZ1jbRYA0AgO7oRqO0nhhxlpSUzWg3cBQI3cBRonla+Fhjx8uXd6ykppYGa0fxpgEAgKjWg0ZpPRGfKY0+n7XdwFEgdANHwRgjs22LnI00TwubQYPlP/EUyTItDdb4cAMAgI560SitJwbPlDLGM9oN9BL/c4BeMsZIzc1ytmxyu5ToVrJf9uK3pKAtYyZJGuh2RQAAeES8jJkgabwUbJZ2vi7te1d9Gril0HpwwzIvoLcY6QZ6yRgjZ90qmYLtbpcSG3w++U87U1ZauqRCSXvcrggAABf1QaO0nhiQKw2axjRzoBcI3UAvGGOkulrZS96S+C/Ur3wnnCQrZ5ikSlnWdvX5p/kAAHhaHzdK6za2EAN6i9AN9JK9/AOZon1ulxGTrAmT5ZuUJ6mhpcFak9slAQAQZv6Wke0+bpTWE2whBvQKoRvoIeM4UmWF7PeWuF1KbBucI/+Mk1oarOVLqnW7IgAAwmSAjBmpsDVK6wm2EAN6jP8tQA9ZPp/s9WFeN4Uj218oe+lCKWhaGqxluV0RAAB9rLVR2rjwNkrrif0fS2JdN9ATjHQDPWAcR6Zon5yPP3K7FLQKBEIN1lJSJe2TtNftigAA6AP93CitJ4acLKWPYbQb6CZCN9ADxjih7avqmMrsNb4TT5Vv8GAZU9HSYI2XNgBAJGrXKK2hXNqzuJ8apfVAIFka+xlCN9BNhG6gm4zjyOzcLmfdardLQResyVPkGz9JUn3LOu9mt0sCAKCbDmqUVviRVLPT7aK6lj1DypxA8Aa6gdANdJMJBmUvel1qolO2pw0dLv/0mZJsWdYWSfVuVwQAwBF4qFFad/kTpbGfleXzu10J4Hl8NAV0gzFGztZNBO5IsG+P7LcXS7YlY3IlZbpbDwAAXfJgo7Tushukik0yJgJqBVxG6AaOwBgjNTfLbN/qdinorupK2QtekxoaJI2XlON2RQAAHGSIjDlGUppM6Vpp+z+lxnK3i+qZsg2Ssd2uAvA8ppcDR2CMkbNhrcz2fLdLQS/4TzlN1sBsGVMqyyoQDdYAAO6KgEZpPZF1jDTwOFkW24gBXWGkGziMtlHugu1ul4Jesj94R872rZKyWvbzDrhdEgAgJvllzEgZM1kyAWnfe9Ku1yM7cEtSxSbJaRbjeEDXGOkGDoNR7igyYpT8U6dLCrY0WGtwuyIAQMxo3yhtp7TvA0XEuu3uGpArDZrGaDfQBUa6gS60jXLvZJQ7KuzeKfvdpZLja2mwlu52RQCAqNdZo7T3FFWBW5Iqtkh2I6PdQBcI3cBhOFs3STYNQqJGZbnsha9LjU0tb4IGu10RACBqRUGjtO4ytlS6xu0qAM8idAOdYC13FGtqCnU2ryiXNFLGjJLEdDgAQF9JkTFTZMzwUKO0ra/ERiCt3CYF6xntBjpB6Aa64GzdzCh3FLPfWyJn5w5Jg2TMREl+lysCAES2zhqlvRH5jdK6zZHK1rldBOBJhG7gIMYYKdgsU7DN7VIQZs6aT2SvW6XQqESepAS3SwIARKQBLVPJs0ON0vL/Efoz1lRtl5wmRruBgxC6gU44+Yxyx4yC7bI/eFcygZbgneZ2RQCAiBEjjdK6y9hS2Ua3qwA8h9ANtMMod4wqK5G96A2pOdgy1XyQ2xUBADwvhhql9UTlFskE3a4C8BRCN3AQZ+sWRrljUUNDqMFadaWk0ZJGuF0RAMCTYrRRWnc5zVLFFhkTo6P9QCcI3UB7ts0odyxzHNlvL5Kzd5eMGdwyZZCXSQCAFGqUNiqGG6X1QPkmtysAPIV3k0AL4zgyO7dLQaZExTrnk+VyNq6TlN6yzjve7ZIAAK5qbZQ2KLYbpXWX3SBVbmW0G2hB6AZaWZac7VvdrgIeYbZtkb3sPcnEtQTvVLdLAgD0Oxql9VrZBkmW21UAnkDoBtQyyr1vt9RQ73Yp8JLi/bKXLJCCjoyZJCnL7YoAAP2GRmlHJVgrVRcw2g2I0A1IkiyfT87WfLfLgBfV1cp+61WptkbSWEnD3a4IABBWNErrM2XrZVnEDYD/BYh5xnFkykqkqgq3S4FXOY7sJW/JKdwrY4bImPHi5RMAog2N0vpcU6VMzR5GuxHzeNeImBca5d7idhmIAM6KD+Vs2SgpQ8bkSopzuyQAQJ+gUVrYlG9gtBsxL+B2AYCbjDFSXa3M/kK3S0GEMFs2yq6qlH/GSTImT5aVL6nO7bIAAL0SL2NGybIypGCdtHcB67b7Wn2xTGOFFJ8hy6KxGmITHzsh5jHKjR4r2id7yULJVmgaoga4XREAoMdolNZv2LcbMY7QjdjW3Cyzh+lj6IXaatkLXpPq6yWNkzTU7YoAAN1Co7R+V10gOUG3qwBcQ+hGzDLGyNmxVXJo7oFeCgZlL3pDTnGRpGEyZqzYkxQAvCrUKE3KpVFafzO2VJlPQzXELEI3YpcxMgXb3K4CUcD56D3ZWzcr1IhnsmiXAQBec6BRmqkuoFGaGyq2iA+mEasI3YhJxnFk9u2WmprcLgVRwmxcJ3vlcklJMmaKpCS3SwIAKF7GTJA0Tgo2SztfD41wixHXfheslWr3MtqNmMRwDGKS5fPJLtjhdhmINnt3y66plv/UM2R8ubKsbZIq3a4KAGLUEBkzTJJkStdIpWtdrgeq2CwrdbjbVQD9jpFuxBxjjExNtVRe6nYpiEZVlbIXvC41NMiY8ZKGuF0RAMSYzhqlEbg9oa5Qpqk6tGUrEEMI3YhJDmu5EU7NTbIXvi6VlUoaIWNGi3VsABBuNEqLCGwfhhhE6EbsMY7M7l1uV4EYYH/wdssHPANlzCRJfrdLAoAoRaO0iFG1PdTNHIghhG7EFOM4Mnt2h5qpAP3AWbtK9pqVkpJbGqwlulwRAEQTGqVFHBOUKrfSUA0xhdCNmGL5fHJ2bne7DMSaXTtkv79UcnwyJldSutsVAUAUGNIyup0WapS2/Z9SY7nbRaE7KvNlWcQQxA6e7YgZxhiZ6iqpgl/IcEF5ueyFb0hNzS2jMtluVwQAEYpGaRGvqUqmoYyGaogZhG7EFGcHDdTgoqZG2W+9KlVWSBrV0vAHANA9BzdKe5dGaZGscqvbFQD9htCN2OE4MntpoAb32e8ulrOrQNIgGqwBQLe0a5RW1doojd/pEa26QKy9R6wgdCMmhBqo7ZSCQbdLASRJzuqP5WxYo9A0yTxJCW6XBAAe1EmjtEIapUUFp1mq3k1DNcQEQjdiQqiB2g63ywA6MNu3yv7wXckEWoJ3qtslAYCH0Cgt6lVto6EaYgLPckQ9Y4xMbU3LOlrAY0pLZC96U2oOtkw1H+R2RQDgsoMbpb1Mo7RoVVckE6x3uwog7AjdiAnO7gK3SwC61lAve8FrUk2VpNGSRrhdEQC4oKtGaU1uF4awMezZjZhA6EbUsyxLZs9ut8sADs9xZC9dKGfvbhkzuGUNIy/RAGIFjdJiVtV2ppgj6gXcLgAIJ2OMVFEm1de5XQrQLc4ny2RVVco3eYqMyZVl5UtilAdAtIqXMaNkWRlSsE7as0BqYt12TGmukakrlpIGEr4RtQjdiHrO7p1ulwD0iNm6WXZ1pfwzTpZRXkvwrnW7LADoY0NkzDBJkilZI5WxbjtmVW2VkuhpgujFx0mIbsbI7NvjdhVAz+0vkr1kgRR0ZMxkSVluVwQAfaSTRmkE7thWvUsytttVAGFD6EbUMo4js79Qam52uxSgd+pqQw3WamskjZU0zO2KAOAo0CgNXTBBqXoXDdUQtQjdiFqWzyezhyYsiHC2LXvJW3KKCmVMjowZJ166AUQeGqXhCGp2sqYbUYtnNqKWCQZDI91AFHCWvy8nf7OkzJbp5nFulwQA3RAvYyZKGicFm6SC16XC9yQxoomD1BbKOMxORHQidCMqGceR2btbcviljuhhNq+X/ckySYkyJk9SstslAUAXLEk5LaPbqaFGadv/RWdyHIbDFHNELbqXIypZPp8cppYjGu3bI7umSv5T58j4J8uytkuqcLsqAGgnRcaMlpQoNZRJexazbhvdU7NTVsY4t6sA+hwj3YhKprFBpqzE7TKA8KiuDjVYq6+XNF5SjtsVAYBolIajVlvEFHNEJUI3ok5oajnbhCHKBYOyF70hp2S/pOEyZoxC0zkBwA0DZMyxolEajg5TzBGdCN2IOpbPJ1O01+0ygH7hfPiunG35krJaGqyxaghAf2rfKK2RRmk4etV0MUf04d0Zoo5pbpIpK3W7DKDfOBvWSFWV8h8/XcbkybLyJdW7XRaAqGZJGiJjhkpSqFFa2Vp3S0J0qCuSsZtl+dmlA9GD0I2oYhxHpnCfZIzbpQD9a8/OUIO1WafL+HJlWdskVbpdFYCoRKM0hJMj1eyUSR/LiDeiBs9kRJXQ1PJ9bpcBuKOyQvbC16XGRhkzXtJgtysCEFUOapS2l0ZpCJPqXQRuRBWezYgqxrZliovcLgNwT1NTqLN5eZmkkS2jUTRYA3C02jdK2xFqlFZLozSESV2hjE0Xc0QPQjeihnGcUOB2aN4C2O8vlVOwXdLAliZHfrdLAhCROmuU9r5olIbwMlINXcwRPQjdiBqWzydTSNdyoJWzdqXstasUWn+ZJynB7ZIARAxLUo6MOUZSaqhR2vZ/SU3lbheGWFG7hynmiBo0UkPUMI4jU1TodhmAt+zcLru6Sv5TZssoT5a1VVK121UB8DQapcED6gpljEPwRlTgWYyoYIwjU1YiBVn/AxyivFT2wjekpmDLNNFstysC4Ek0SoOHOEGpvliGHWkQBQjdiBIWU8uBw2lskL3gVamqUtIoGTPS7YoAeAqN0uBBNXvcrgDoE4RuRAXLskL7cwPomjGy31kkZ/dOSdk0WAMgGqXB02r3yrLYgUMKvdd95ZVX3C4DvUToRsQzxshUVUqNDW6XAkQEZ9UKORvWSkqVMbmS4t0uCUC/o1EaIkBztUxzrdtVdOqqq66SZVn65je/echlN9xwgyzL0lVXXdVn97dv3z5dcMEFfXZ76F+EbkQ+Y2T2szc30BNme77sj96XTFxLZ/NUt0sC0G9SZMwUGTNMaiiXtr4sla11uyigczW7Pbt12MiRI/X888+rvr6+7VhDQ4Oee+45jRo1qk/vKycnRwkJ7EISqQjdiHiWzydTQugGeqxkv+zFb0lBW8ZMkjTQ7YoAhFX7Rml+GqUhMtTu9WwH8xNOOEEjR47UP/7xj7Zj//jHPzRq1ChNnz697VhjY6NuvvlmDR48WImJiTrttNO0bNkySZLjOBoxYoQef/zxDrf9ySefyOfzqaCgQNKh08t37dqlyy67TJmZmcrKytJFF12kHTt2hO/B4qh48xkM9ICxbZnyMrfLACJTfZ3st16TaqoljZE03OWCAIQHjdIQoer3yzi221V06Wtf+5rmz5/f9v0f//hHXX311R2uc9ttt+mll17Sn/70J3388ceaMGGCzjvvPJWVlcnn8+nyyy/Xc8891+GcZ599VrNnz9bo0aMPuc/m5madd955SktL09tvv613331XqampOv/889XUxIdoXkToRkQzxsiUlkiON6cdARHBcWQvXSBn3x4ZM0TGjBe/HoBoQaM0RDjjtO3Z7UVXXHGF3nnnHRUUFKigoEDvvvuurrjiirbLa2tr9fjjj+uBBx7QBRdcoClTpujJJ59UUlKSnnrqKUnSvHnz9O6772rnzp2SQqPfzz//vObNm9fpfb7wwgtyHEd/+MMfdNxxxykvL0/z58/Xzp07tXjx4rA/ZvRcwO0CgKNliplaDvQF5+OPZE2YLN+kPBmTK8vaIqnZ7bIA9IolaYiMGSpJoUZprNtGpKrdI6UMc7uKTmVnZ+vCCy/U008/LWOMLrzwQg0aNKjt8q1bt6q5uVmzZ89uOxYXF6eTTjpJGzZskCRNmzZNeXl5eu6553T77bdryZIl2r9/v77whS90ep+rVq1Sfn6+0tLSOhxvaGjQ1q1bw/AocbQI3YholmXJlOx3uwwgapj8TbKrKuWfcZKMpsiy8iV5s3MsgK6kyJgxkhKkhlJpzxLWbSOy1e7z9NZhX/va13TjjTdKkh577LFe3ca8efPaQvdzzz2n888/XwMHdt5rpaamRjNmzNCzzz57yGXZ2dm9un+EF/MHEdFMY0PLWlQAfWZ/oeylCyXbtDRYG+B2RQC6pbNGaW8SuBH5gnUyTd59v9e6lrp1rXV748ePV3x8vN599922Y83NzVq2bJmmTJnSduzLX/6y1q5dqxUrVujvf/97l1PLpVADty1btmjw4MGaMGFCh6+MjIy+f4A4aoRuRCzjOGwVBoRLbY3sBa9JdXWSxkka6nZFAA6LRmmIch5e1+33+7VhwwatX79efr+/w2UpKSn61re+pVtvvVWvvfaa1q9fr69//euqq6vTNddc03a9MWPG6NRTT9U111wj27b12c9+tsv7mzdvngYNGqSLLrpIb7/9trZv367Fixfr5ptv1u7du8P2ONF7hG5ELMvnYz03EE7BoOzFb8rZXyRpmIwZp9A6UQDecXCjtNdolIboVFfk2a3DJCk9PV3p6emdXnbffffp0ksv1Ve+8hWdcMIJys/P1+uvv64BAzrOJJs3b55WrVqlz33uc0pKSuryvpKTk7V06VKNGjVKl1xyifLy8nTNNdeooaGhyxrgLssYY9wuAugNY4zsN/8rNTNtDgg3K/cY+cZNlFTfss6bBmuAuzo2SlPpWqlsnasVAWHli5c14VK3qwB6hUZqiEjGGKm6ksAN9BOzcZ3sygr5p8+UMXktnc3r3S4LiFE0SkMMcppkGitlJbBmGZGH0I3IZIxMMV3LgX61b4/smhr5Tz1Dxp8ry9ouqcLtqoAY4pcxw2VZ2ZJplva9y7ptxJa6Qpn4NE9PMwc6wzMWEcny+WTKSt0uA4g91ZWhBmsNDZLGS8pxuyIgRtAoDfD6um6gKzxrEbFMeZnbJQCxKdgse+HrMqXFkoa3THOlwRoQHgc3SnuVRmmIXfXFblcA9ArTyxGRTG0N67kBl9kfvCPflKmyxoyTMQmyrK2Sgm6XBUSJjo3STMlqGqUBTpNMU6WseNZ1I7IQuhFxjOPIlJa4XQYASc761VJVhfxTp7drsNbgdllAhKNRGtCluiKZONZ1I7LwbEXksSyZctZzA56xe6fsd5dKjk/G5Epij1Cgd/wyZpSkXMn4pb3vSrveJHAD7dXtJ3Aj4vCMRcSxLIsmaoDXVJbLXviG1NgkYyZIGux2RUCEObhR2ks0SgM6w7puRCBCNyKOaWqS6mrdLgPAwZoaQ53NK8oljWwZsQNweAldNEozbhcGeJPdINPM+0BEFtZ0I6IYx5EpYz034GX2e0vkO266rJGjZUxiS4M12+2yAI9p3yjN0CgN6In6YplAEtPMETEI3YgsrOcGIoKz5hOpqlL+Y45r12Ct0e2yAI+gURpwVBrKpLTRblcBdBuhGxEltJ6b/bmBiFCwTXZ1lfwnnyqjvJYR72q3qwJc5Jcxw2VZ2ZJplva9y7ptoDcaSmVZlttVAN3GnAxEFOPYUlWF22UA6K6yEtmL3pCagy3rVge5XRHgkqyDGqX9ncAN9FZjuYyh7wEiB6EbEcMYI1VUSI7jdikAeqKhIdRgrbpS0mhJI9yuCOhHrY3Sxh7UKA1Arxlbaqpyuwqg2wjdiBzGyFQwtRyISI4j++1FcvbukjGDW7YV41cQopklKUfGTJGUEmqUtv1fUlOl24UB0aGhWMYwEIPIwJpuRAzL55NTxZsVIJI5nyyXVVkpX+4x7Rqs0UAK0YZGaUDYNZRJ6ePdrgLoFkI3IoqprHC7BABHyWzbIru6Uv6Zp7Q0WMuXxJ6riAY0SgP6TUMZzdQQMZjbh4hhHFuqrXG7DAB9oXi/7CULpKAjYyZLynK7IuAo0SgN6FeNFTLGdrsKoFsI3Ygc1dUSnSqB6FFXK/utV1s+TBsraZjbFQG9QKM0wB1GaqigizkiAqEbEcE4jkxFudtlAOhrjiN7yVtyCvfJmBwZM178akJkoFEa4LqGEkmEbngfa7oRGSxLhv25gajlrPhA1sRc+SbmypjclgZrzW6XBXQhVcaMFo3SAJc1lMmy+KAW3kfoRkSwLEuGzuVAVDNbNsquqpR/xkktnc3zJdW5XRbQDo3SAE9pZCtZRAY+GkJEMMZIVVVulwEg3Ir2yV6yULLV0mBtgNsVAS1olAZ4TlM1e3UjIhC6ERnqaiWHDpVATKitlr3gNam+XtI4SUPdrggxjUZpgHcZqZmdbeB9hG54Hk3UgBgUDMpe9Iac4iJJw2TMWIUaVwH9hUZpQERoLGe0G57Hmm54H03UgJjlfPSeTO4x8o2bKGMSWtZ5B90uC1GPRmlAxGisklLdLgI4PEI3PM+yLIkmakDMMhvXhRqsTZvRrsFavdtlISod3CjtHal2t9tFATicpko6mMPzCN2ICKa62u0SALhp727ZNdXyn3qGjC9XlrVNEh/GoS9lyZiRkvyhRmms2wYiA0s+EAH4WAieZ2xbamxwuwwAbquqlL3gdamxUcaMlzTE7YoQFRJkzCTRKA2IUHQwRwQgdMP76mrdrgCAVzQ3hTqbl5dJGtGy7pYGa+iN9o3SkmmUFkZLl23QZ7/5gIafdr18k7+sV95a1uFyY4zu+M3fNOy065U89Uqdc9U92rJj3xFv97Fn39DYs25W0nFX6pQv/Fgfrc7vcPl3731GA0/6ukbNuVHP/uudDpf97dUP9NlvPnD0Dw4eQAdzeB+hG55mjJGpZn9uAB3Z7y+VU7BN0sCWUUq/2yUhoqTKmCkyZpjUUCZtfUUqW+d2UVGrtq5RUyeP1qN3Xt3p5b948t965JnX9fhdX9MHL/5UKUmJOv+a+9TQ2HXzuhf++76+d+9fdMcNl2jFy/doau4onX/NfdpfGvrQ5N8LV+iv/3lPrz/1Q91/65f19f99UiVlofcTldV1+t9fv6hH7+i8HkQgOpjD4wjd8DZjpFo+vQRwKGftKtlrVkpKbhmtTHS5Inifv2V2xGTJ+KW970i73qQzeZhdMGeafnbLZfrcOScecpkxRr/582v6f9+6WBedPVNTc0fpT7/4lvbur9Arby3v8jYfmv9fXXvZmbr60rmaMmGEfnf3NUpOTNAfX1oiSdqwda/mnpSnmceN0+WfPlXpqUnavrtYknTbA8/pm5efrVHDBoXnAaP/NTJDBd5G6IanWT6fDKEbQFd27ZD9/tuS45MxuZLS3a4InpUlY46VNDDUKC3/73Qm94Dtu/ersLhCZ596bNuxjLRknXz8eL3/yZZOz2lqCmrFuu0dzvH5fDr71GP1Qcs5x+eO0vK121VeWaMVa7epvqFZE0YP0TvLN+qTdTt081fOD+8DQ/+igzk8ju7l8DxTQ+dyAIdRXiZ70Rvyn36WTPwEWdYuScVuVwXPSJAxo2VZaVKwRtqzlHXbHlJYHPq3GDIwo8PxIQMzVFTS+b9TSXm1bNs55JzBAzO0cdteSdJ5px+veZ+drZM+/2MlJcbr6fu/qZSkRF1/93zNv/cbevyvb+rRZ97QoAFp+v1Pr9UxE0eE4dGh3zDSDY8jdMP7ammkBuAIGhtlv/Wq/LPnSpmjZExiS/hG7LIkDZExQyUZmeLVUjnrtmPJXTd9Xnfd9Pm27+9+9CX9z6xjFRcI6J7HX9Hqf9+v/yz6WFf+4Lda/o+fu1gpjlpzrYwxsiwaa8KbmIcBTzNNTVKw2e0yAEQI+93FcnYVSMqWMRNFg7VY1UmjNAK3J+Vkh0ari0o7jlQWlVZqyKCMzk7RoAFp8vt9h5yzv7RSOYMyOz1n49Y9evZf7+in3/6CFn+0XmfMzFV2Vrouu+AUfbxuh6pr6o/+wcBFjmSzvSy8i9ANb2NqOYAeclZ/LGfDGoWCV66kBLdLQr9p1yjNoVFaJBg7YrBysjO14P0DH4pU1dTpw1VbNWv6xE7PiY8PaMYxYzuc4ziOFry/Tqd0co4xRt+88yn98vYrlJqSKNtx1By0JantT9uh83XEY9sweBjTy+FZxnFYzw2gV8z2rbKrKuU/6VQZ5cmy8iXxhiy6ZcmYkZL8MlXbpcIP3C4ILWpqG5S/s7Dt++27i7Vyww5lZaRq1LBB+vZXz9c9j7+siaNzNHZEdmjP7sGZuvjsmW3nnH3lPbr4nJm68YrzJEm3XP0pXfWD32nmseN00tTx+vWfXlVtfYOuvmTOIff/h78tUnZWuj5z1gxJ0uwTJunuR17SByu36NWlqzRlwnBlpqeE+aeAsGuukUkcSEM1eBKhG95lic7lAHqvtET2orfkP32uTNwkWVaBpFK3q0Kfo1Ga1y1fu01nffVnbd9/796/SJKu/NwZmn/fN3Xb1z+j2vpGfeOOP6iiqk6nzZikV/9wuxIT4tvO2bqrSCXlBz6I/+KnZqm4rEp3Pvx3FRZXaFreaL36h9sPmZJeVFKpn//uFb3717vbjp00dYK+e/WF+vQ3HtDgrHQ9ff83w/XQ0Z8Y6YaHWcYY43YRQFfs5R/IFO1zuwwAkcznk/+0ubLSMiQVSWKbqOjQsVGaStaxbhuIZeljZeWc4nYVQKcY6YanmXoamwA4So4je+lC+U44UVbOcEmJsqxtkljDGblSW9ZuJ0gNpdKeJazbBmJdM7vdwLsI3fC2BkI3gL7hfLxM1oRK+SZNkTG5Leu8CWqRxS9jRsiyBklOs1T4jlTLzAUAYno5PI3QDc8yjiM1NbpdBoAoYvI3y66qkn/GSe0arDE6EhlolAbgMIL17NUNz6K9H7yrkcANIAz2F8peukAKOjJmkqQstyvCYSW0/DuNlYINUsGrBG4AnTBSkBmS8CZCN7yrvs7tCgBEq9pa2Qtfl2prJY2VNMztinAIS1KOjJkiKVmmeLW0/d90JgfQtWa2moU3EbrhScY4MoRuAOEUDMpe8pacokIZkyNjxolfi16RKmOmyJhhUkOZtPUVOpMDOLLmGhlDk0x4D+8u4E1GNFED0C+c5e/Lyd8sKVPGTJYU53ZJMczf0pV8suT4pb3vSLvepDM5gO6hgzk8ikZq8CbLkiF0A+gnZvN62dWV8k+fKWNaG6wx26Z/0SgNwFEK1suyGFOE9xC64UmWZUkNDW6XASCW7Nsju6ZK/lPnyPgny7K2S6pwu6oYkCBjRsuy0qRgjbRnKeu2AfSOzXtHeBMfBcGzTD0j3QD6WXW17AWvSfX1ksZLynG7oihGozQAfcxm5xt4EyPd8K4GpnYCcEEwKHvRG/KdfJp8g4bLmERZVoFCzSbQN1Jb1m4nSPUl0t6lrNsGcPSCjHTDmwjd8CTjOOzTDcBVzofvSHnHyRo7viV450sKul1WhPPLmBGyrEGhkF34tlS7x+2iAEQLppfDo5he7gFXXXWVLMvSfffd1+H4K6+8ElrbHIuaGfEA4D5nwxrZqz6WlCRj8iQlul1SBMuSMcdKGhhqlLb1JQI3gL5lbBmHD0fhPYRuj0hMTNT999+v8vJyt0vxBka5AXjFnp2y310iOb6W4J3hdkURJkHGTJI0NjT1s+BVOpMDCB/WdcODCN0ecfbZZysnJ0f33ntvl9d55513dPrppyspKUkjR47UzTffrNra0H6Ejz76qI499ti267aOkv/ud7/rcB//+7//K0latWqVzjzzTKWlpSk9PV0zZszQ8uXLw/Toes408YIJwEMqK2QvfF1qbJQx4yUNdruiCHBwo7RVNEoDEH5MMYcHEbo9wu/36+c//7keeeQR7d69+5DLt27dqvPPP1+XXnqpVq9erRdeeEHvvPOObrzxRknSnDlztH79ehUXF0uSlixZokGDBmnx4sWSpObmZr3//vuaO3euJGnevHkaMWKEli1bphUrVuj2229XXFxcvzzWI2E9NwBPamoKdTYvL5M0sqURWIwuATqiVBkzRcYMk+pLpa2vSOXr3S4KQCwI1ssYGl/CWwjdHvK5z31O06ZN05133nnIZffee6/mzZun73znO5o4caJOPfVUPfzww/rzn/+shoYGHXvsscrKytKSJUskSYsXL9b3vve9tu8/+ugjNTc369RTT5Uk7dy5U2effbZyc3M1ceJEfeELX9Dxxx/ffw/2SFjTDcCj7PeXyinYLmmgjJkoye92SR7ib/kwYrLk+KS9b0u736IzOYD+E2wQu03AawjdHnP//ffrT3/6kzZs2NDh+KpVq/T0008rNTW17eu8886T4zjavn27LMvSGWecocWLF6uiokLr16/X9ddfr8bGRm3cuFFLlizRiSeeqOTkZEnSd7/7XV177bU6++yzdd9992nr1q1uPNyuNfEGDYB3OWtXyl67SlJKyzrvBLdL8gAapQHwAKaXw4MI3R5zxhln6LzzztMPf/jDDsdramr0jW98QytXrmz7WrVqlbZs2aLx48dLkubOnavFixfr7bff1vTp05Went4WxJcsWaI5c+a03d5dd92ldevW6cILL9TChQs1ZcoUvfzyy/36WLtkWTKMdAPwup3bZb//jmQCLcE7ze2KXEKjNAAeYjeIpT/wGvbp9qD77rtP06ZN0+TJk9uOnXDCCVq/fr0mTJjQ5Xlz5szRd77zHf3tb39rW7s9d+5cvfXWW3r33Xf1ve99r8P1J02apEmTJumWW27R5Zdfrvnz5+tzn/tcWB5TT1iWxUg3gMhQXip74Rvyn36WTPxEWdYuScVuV9VPLElDZMxQSSbUKI112wDcFmyM3S134VmMdHvQcccdp3nz5unhhx9uO/aDH/xA7733nm688UatXLlSW7Zs0T//+c+2RmqSNHXqVA0YMEDPPfdch9D9yiuvqLGxUbNnz5Yk1dfX68Ybb9TixYtVUFCgd999V8uWLVNeXl6/Ps7DCja7XQEAdE9jg+yFr0lVlZJGyZiRblfUD2iUBsCjHN5DwnsI3R71k5/8RI7jtH0/depULVmyRJs3b9bpp5+u6dOn64477tCwYcParmNZlk4//XRZlqXTTjut7bz09HTNnDlTKSkpkkKd0ktLS/XVr35VkyZN0mWXXaYLLrhAd999d/8+yMMwzbxgAoggjiP7nUVy9uyUlC1jJig6f8XSKA2Ax5mg2xUAh7AMPfXhQcElb0k11W6XAQA9Zo2dIF/esZIaZVlbJEVLIM1qGcX3S9U7WLcNwJsSMmWNvsDtKoAOWNMNb2KkO2Ld/+JLevn9D7Rp9x4lxcdrVl6ufn7VVzR5xPC26zQ0NenWp57Wi0vfUWNzUOeeME2PfOs6DRmQ2eXtGmN097PP66nX31RFbZ1OzcvVo9dfp4nDQ7M9Gpubdd3Dv9W/P/hIOQMy9cj11+l/ph3YBu+XL72incXF+s03vx62xw5IktmeL7u6Sv4TT5FRnixrq6Qat8s6CgkyZrQsK00K1kh7lkpNlW4XBQCdcxjphvdE49w3RANCd8RaunadvnXhBXrnwfv06k/vVHMwqE/9+G7VNhzYwuN7T87X/320XM/ffqsW3PdT7S0t0xd+fv9hb/fBl17Wo//+Pz12wzf17i/vU0pigi6846dqaGm69+Rrb+iT/K16+8F7de355+grDzyk1ok82wuL9NTrb+qnX50XvgcOtFeyX/bit6Sg3dLZe6DbFfWCJSlHxkyRlBxqlLb93wRuAN5G6IYHEbrhOcYYybHdLgO99H8/uUNXnn2Wjhk9SsePG6unbrlJO4tL9HF+aC/4ytpazX9zgR645iqdefxxmjFhvP7wnRv1/oZN+mDjpk5v0xijh//5H/3oi5/XZ085SVPHjtH8796svWVl+uf7H0mSNu7arU+ffKKOGT1K37rwAhVXVqmkqkqSdONvf6+fX/UVpbfsUw/0i/o62W+91rJUZoyk4Uc4wUtolAYgQtFIDR5E6Ib3ELijSmVtnSRpQGqqJOnj/G1qDgY7TP3OHTlCo7IH6YONmzu9je1FRSosr9BZ7c7JSEnRSZMntgX1qWPH6N31G1Tf2Kg3Pl6poVkDNCg9Xc8tWqLE+HhdfOop4XqIQNccR/bSBXL27ZExQ2TMeHn7Vy+N0gBEOGOLllXwGtZ0w3vadW1HZHMcR9978o86dUqujh0zWpJUWF6u+EBAmakpHa47ODNTReXlnd5OYXmFJGlIZkaH40MyM1VUETrn6nP+R2t2FGjq9d/WwPQ0PfeD76u8pkZ3P/u83rr3p7rjmef04tJ3NC4nR09++wYNHxSJ030RqZyPP5I1YbJ8k/JkTG5LgzWvjcYcaJRmqrbTKA1A5DK2ZBFz4B08G+E9hO6ocdPjT2pdwU4t/sU9Yb+vuEBAj3zrug7Hrvn1I7rhMxdq5bZt+tf7H2rFI7/Sgy+9olueeEov/ui2sNcEtGfyN8muqpR/xkntGqzVul2WaJQGIOo4QclHzIF3eHmOG2IVoTsq3Pz4k/rvsuV68+c/0YhBg9qO5wwYoKZgUBU1HcPG/ooKDRkwoNPbymnpal5U0TEIFFVUaEhm5+csXr1G6wt26YZPX6Alq9fp/JkzlJKYqM+fdqqWrFl7FI8MOAr7C2UvXSjZammw1vnzt39Ykoa2a5S2kkZpAKIDe3XDYwjd8B6bNd2RzBijmx9/Uv98/0O9cc/dGpszpMPlJ0wYp7hAQAtXrW47tmn3Hu0sLtEpuZM6vc2xQ4YoZ0CmFq08cE5VXZ0+2rRFp+ROPuT6DU1NuvnxJ/XbG78pv98v23HUbId+ATfbtmw+2IGbamtkL3hNqquTNE7SUBeKaG2UNrRdo7QNLtQBAGFAB3N4DKEb3kMgimg3Pf6Enlu8RM/ceovSkpNUWF6uwvJy1Tc2Sgo1QLv6nP/RrX+Yr8Wr12hF/lZd++tHdUru5A4B+thv3qRX3gutKbUsSzdf9Gn9/IW/698ffqQ1Owp09a8e1rCsLF0066RDarjn+b/p/JknaPr4cZKkU6fk6pX3PtDq7Tv02//8V6fm5fbDTwI4jGBQ9uI35ewvkjRMxoxVaOQ53GiUBiAG0MEcHsNiB3gPI90R7ff/fV2S9D8//HGH43/4zo268uyzJEm//PrV8vksXfbzB9TY3KxzT5imR67vuB570+49qqyra/v++5d+TrUNjfrWI79TRW2tZk/J039+8mMlxsd3OG/tjgL9/e33tPyRX7Ydu3T2LC1Zs1Zn/uB/NWn4MD1z6y19+piB3nKWvSeTe4x84ybKmARZVr6kcI3Q0CgNQIwgdMNjLENPfXiMU1os54N33C4DAPrP0OHyT58pyW7pbF7fhzd+oFGaaaZRGoAYMOx0Wakj3K4CaMNIN7yHkW4AsWbfHtk1NfKfeoaMP1eWtV1SxVHeqCUpR8bkSDKhRmms2wYQI4wxsqz+WLYDHBlruuEpxhhCN4DYVF0pe8HrUkODpPGShhzpjMOgURqAGMZEXngMoRveYgyN1ADErmCT7IWvy5SWSBohY8aoZw3WDm6UtpRGaQBiEKEb3sL0cngPoRtAjLM/eFu+Y6bKGj2upcHaVh25wRqN0gAghNANbyF0w3sI3QAgZ91qqbJC/qnTZUxeS4O1hk6ueaBRmoI0SgOAUOY26p+tGIEjI3QDAOBVu3fKrq6Wf9ZpMr5cWdY2SVUtF9IoDQA6x0g3vIU13fAeOk0CwAGV5bIXviE1NsmYCZIGi0ZpAHA4hG54CyPd8B5CNwB01NQoe8Fr8p9+lpQ+UpJkWUamsVJqLJMyJ4aapdktX05ju783izegAGIKL3nwGEI3AAARwHfsNJnUdFlq2V5RkgmkyUpPC800t3xd7klrnOYDIdxu6CSYt17WeODvTpNk6LEBIBKRuuEthG54DyPdAHDAoMHyTT9Rvvh47SmrVbNtNCY7VcYY2UGjws2lCjaGOpv7/D4FEnwKxAcUiPPLH++XP84nf8AnXyAgnz9evrh0WfGS5Wt5ubUsWVbnq82MEwyNlLcGcruxk7DeyffG7scfEAAcjNANbyF0w3sI3QAgBQLyzThF1sBBqm+ytXpLsUqqG5UcH9CY7FTtb9in7IQcDZ+SraL8MjVUN8qxHTXVOWqqO9L2YgfxSYH4gOLiQ0E90BbW/fIFfPL7k2T5U+SLszqEdcnqdHTdGOfQsN5+FL3D39uFdae5T350AGKcIXTDWwjd8BbyNgDIGjNeVu4xks+n/KJqbdlXJaflPWRdU1BBx5Hf8mtNxceaknG8ciYNVGlBhapL6np3h44UbAgq2NDDsC4pEO+TPyE0sh4K6375Az7543zy+RPk8yfKirfk8ykU0A8zFd4YEwreTnMXYf3gwN7u74xsAQA8itANj7EY6QYQu5JT5DvxVPlSU1Ve06hVO8tV00kQrm0IKj0hUwXOVq0uX6a8jKkaNGaA4pLiVLarf/foDjY5CjY1qbGH5/kCPgVaRtXbwnpca1hvnQqfISvByLKsHkyFbxfWD54C3/b35gPT5JkKD0SfLl4nALcQuuE9hG4AMch37DRp5BjZxmhNQZl2lXY9al1c1aAJOemK88Wr2WnShsrVGps6SQMGD1RcYkD7t5XJ2N4e+XWCjpqCjprqejil3CfFxQcUSGgJ7HF++VpH1wM++fzJsvyp8sW1rlu3Dh/Wjd0Swps6hvWupsC3/p2p8IB3WX63KwA6IHTDewjdAGLJQY3S1u2uVFPw8F3Dd5bUaUJOutLiMlTWWCxJ2l6zWXX2MA1PH61hudkq2lKqYFMUjuI6UnNDUM29mgrvbwvroZH1do3m/Iny+ZPliz9o3brV1bp1c2DdunO4sN540NR4tnADws7nE2sW4SWEbgAA3NBFo7TuaF3XnRaX3ha6Jamofq/qgnWakJarYVMGqyi/VI01TeF6BBEn2GT36oMIX8CnuAS/AvGBto7wgYBPvji/fIF4+XwJ8sVZ8iVYB1ZJHXYLt2C70fOGTjrAdxHe2cIN6B7L3+X/P8ANhG54imVZMrxIAohyHRqlFVZrS+GBRmndVdsQVFpCxiHHq5srtK5ipfIyp2ropEEqKShXTWl9H1Uem5ygo8ago8bank0p9/mkQEIoqMfFB+SP98kXaNcZ3pfSMhXe6uYWbvaBdesdRtc7GVVvPx3e9HxWABDRLCIOvIVnJLyH5hcAolU3G6V1R3F1gyYkH1jX3V6T06A1ZcuVmzlV2WOzFJdYrfI9VX3xCNADjiM11Qel+qDqe9JqzgpNhW8N6v6W6fBto+v+JPn8KfIFLFmWkeWzurmFW2ujuYYjb99mNzEVHpHLx5pueAuhG55jxfG0BBB9etIorTt2FtdpwpD0linmJYdc7sjR+oqVGpeWq8ycAYpLDKh4e7lMT4fU0f+MFGy0FWzsxVT4OF9bozl/vF+BlpF1X8AnfyBePn+CrPiMbm3hJkmmbb/11qnwnY2oHxTenSamwsNdNFKDx5Bu4D2BOLcrAIC+04tGad1xYF13Rqehu9W26o0amjxSQzNHaFhutgq3lMpujsIGa5AkOc2OGpub1Fjbs/N8fp8CCT4F4gMdt3AL+OQLtG7hli4rXt2cCh880Giubb/1Lqa/tw/vTIVHXyB0w2MI3fCeAE9LAFHgKBqldVdX67oPtq9ul+qDtRqbOknDp2SrML9UTT1cn4zo5tiOmuocNdX1MPT6pEB8QHHxLSPr8e3WrAd88vuTZPlTDlm3fuSp8O23cDvC9m1tXeGBFoRueAzpBt7j52kJILL1RaO07iipbtT45LRO13UfrKKpTBsqVik38zgNm5yt4u3lqi2nwRqOkiMFG4IK9moLN5/8CQEF4tpt4xbwhabD+xPk8yfKire6NRW+bQu31kZznYX1Dt+3+zvr1qMP/YHgMaQbeI+fTycBRKg+bJTWHbtKajV+SFqX67oP1uDUa3XZcuVlTtPg8Vkq31Olin3VYasPOJxgk6NgU1NPWsxJCm3hFkjwKxAXCAX31qnwcT75/K1T4TNkJRhZltWDqfDtwnqnI+oHdYk3LNPwLEa64TGEbniORegGEIH6ulFad9Q0BmU7jlKPsK67PUeO1lV8rAnpeRowPNRgrWRHuQyDfYgQTtBRU9BRk3o4pdyntiZzgXi/AnF++VpH1wM++fzJLVu4ta5btw4f1o0d6gjvNHUM64fbvs1pYip8f2CkGx5D6IY3+QOSTTMVABEgTI3Suqu2Iaj0bqzrPlh+1QYNTx6tIVnDFJcYUNGWUtn9WDfQ7xypuSGo5l5Nhfe3hfXQyHq7RnP+RPn8yfLFH7Ru3epq3XrrVPiDusIfsna9k0ZzTIXvHkI3PIbQDW8KELoBeFwgIP/MU6Ss8DVK647iHqzrPtieugLV27UanTJBw6YMVtGWktC+0gA6CDbZCjb1Ygu3gE9xCX4F4gMt+637Duy3HoiXz5cgX1yGfAmS2rZbP9wWbsF2Ibyh8w7wnYX3WNrCzRfX5c8PcAuhG94UCKjHi7wAoJ+0NkozPp+2hrFRWnf0dF33wcoaS1QfrNfkjGM1NG+wireWqa6yIQyVArHHCTpqDDpq7OFuAT6fFEgIBfW4+ID88T75Au06w/tSWqbCW93cws1uN7re2G50/TCj6k6j5ETgh3A+tp6F9xC64U10MAfgRe0apZXVNGp1mBuldUdoXbfdo3XdB6u3a7W2bIXyBhyvwRNCDdYqC2v6uFIA3eU4Cs06qQ+qviejEFZoKnxc68h6S6O5ttH11qnwAUuWZWT5rG5u4dZ8IKx3OaLefu16s1ybCu+Ld+d+gcMg2cCbAjRTA+AtvuOmSyNG92ujtO6qbbB7ta67vaCCWlO+QpMyjlXWiIxQg7WCCpaQApHESMFGW8HGXkyFj/O1NZrzx/sVaBlZ9wV88gfi5fMnyIrP6NYWbpJk2vZbb9dortOO8O3Cu9N09FPh/Yx0w3sI3fAkKxDH+zwA3uByo7TuOJp13QfbXLlWI1PGKntgjuISAiraWibHY48XQN9zmh01NjepsbZn5/n8PgUSfPLHBxQXf1CTuUDrFm7psuLVg6nwB4f1zrrBN3c8blpmHTHSDQ8idMObAjw1AbjMI43SuqN1XXdqXLrKeznFvMPt1W5XXbBOo1PHaXhetgq3lPaq4zOA6OfYjprqHKkuqPqenGiF1q3HxfvlTwht4da2Zj3gk9+fJMufcsi69SNOhWf/Q3gQyQaeY4yREhLcLgNADLPGjpc1OdQoLb+wWvkuNkrrjtZ13Wl9FLolqbSxSA12nSamT9GwvGzt31qm+ipvfugAIAIZKdgQVLBXW7j55E8IKBDXbhu3gE/+OJ/iEgPyG0MHc3gKoRveY4ys+ASmlwPofx5slNZdtY2O0uMz+/Y2g9VaW/6xpmQeryETB6psV6Wq9vdw7ikA9LFgk6NgU1OnLeYGDE9XxpDU0JpzwCMI3fCmhES3KwAQY7zcKK07SqoaNG5ImuJ8cWp2erY90eEETbNWly9XbsZUDRyVqbjEgEp3VdJgDYAn+QKdrxUH3ETohvdYFtPLAfSf7JZGaXHx2l1aq/V7vNcorTt2ltZq3JA0pQYyVN7UN1PM29tYuVqjUydoYHa24hLjtH9rqRyb5A3AW/wBH6Pc8BxCNzzHsixGugGEXwQ1SuuOmoagbMcJresOQ+iWpIKafNUFazUybYyG5Q1W4ZaSXm1NBADh4g90vY0Z4BZCN7yJkW4AYRRpjdK6q7bRDq3rDuOy6+KGfWoI1mlCep6GTxmsovxSNVQf3TZlANBX/HFML4f38KyEN8UTugGEQXKKfHPOkX/KVFXUB7V0Q5E274uOwC2F1nUn+BMV54sL6/1UByu1ruJj2bKVM2mQUgclh/X+AKC7fAG/2yUAhyB0w5Msn4+9ugH0Kd9x0+Wbc47spGStKijTe5uLI6YzeXftLA0NcacGMsJ+X01Ok1aXr1B9sE7ZYwYoa0R62O8TAA7LalnTDXgMqQbeFZ8gBaPrDTEAF0RJo7Tu6I913R052lC5SmPTJmnAkIGhBmvbymSiZeoAgIgSiGOUG95E6IZ3JSRIdewHC6CXoqxRWnfVNtpKC/O67oNtr96s+qThGpYxSsPyslW0pVTBJhqsAehfgXhCN7yJ0A3PshIS2QYWQK+EGqUdK+OzoqpRWne07tcdsOIUNH23X/eRFNbvUX2wTuPSJmvYlMEq2lKqxloarAHoP35CNzyKRQ/wJGOMFB/vdhkAIk2HRmnNUdcorTta13WnxfX/GuvK5nKtq1gp43M0dPIgpWQl9XsNAGJXIN4feg8JeAwj3fAmY2QlJjHSDaDbfMdNl0aMlm2M1hSUaVdpndslueLAuu4MlTeV9vv9NzkNWlO2XHmZx2vwuCxVJFWrfE9Vv9cBIPb44/ySkcQ23fAYQje8K4ktaAB0Qww1SuuuOhfWdbfnyNG6ik80Pj1XGTkDFJcYUPH2chqsAQirQLyfwA1PYno5PMny+WSlpLhdBgAvCwTkP+U0+U88VQ2OTx9sKdbKgvKYD9ySVFzdoER/ogJWePfrPpKtVRtVWL9byZmJGpo7SP443nYACJ9AvF+WReqG9/DbD96VTOgG0Dlr7Hj5zr5QJmuQthRWa/H6wpjoTN5du0rcW9d9sL11u7SterPiEgMaNmWw4pPd/SAAQPSiezm8itAN74pPkHw8RQG0k5Iq39zYbpTWHdXt1nV7QUVTqTZUrJLll4blZit5QKLbJQGINpbkC/C+Ed7EMxOeZVmWlEjnWwAhvuOmy3fG2bITk7WqoEzvbS5WTUPQ7bI8K7Su2xuhW5IanHqtLluuJtOoIeMHKmNoqtslAYgi/jimlsO7aKQGT7OSU2TqXOoEBMAbaJTWKyXVDRo7uP/36z4cR7bWln+sielTlDU8U/GJcSrZUS52+AFwtAJxTC2HdzHSDc8yxkjJdDAHYhaN0o7KTg+t6z7Ylqr1Kqrbq5SsJOVMzmZKKICjFkggdMO7GOmGdxkjKymZvbqBGGSNHS9r8rEyPkv5hdXKL2Tddk+1rutOdWm/7iPZXbdDdXatxqRM0PApg1W4pUTN9SwXANA7cQkBGWOYYg5PInTD2+hgDsSWlFT5TpwlX0qqymoatXpnOeu2j0Jdo630+AzX9us+krLGYjXYdZqUfqyG5WZr/7Zy1Vc2uF0WgAgUl0isgXcxnwuexV7dQGyhUVrfK6luUKI/yfX9ug+nLlirtWUrFFRQQyZkKX0IDdYA9FxcUoBRbngWoRvelkToBqJe9mD5zr1QvlFjtLe8TovWFWpXaZ3bVUUFL+3XfThBBbWmfLlqg9UaODJDg0ZnSrx3BtADcQmMdMO7eHbC06z4eMnvl2zb7VIA9LVAQP6Zp0hZg1TfZGv1lmKVVDe6XVVUqfL4uu6Dbapcq1Ep4zRo0BDFJQZUlF8mx6ZxHoDD8wd88vkZS4R3EbrhfSmpUlWl21UA6EM0Sus/Xl/XfbCdtdtUF6zVqNRxGjYlW0VbStXMMgMAh8F6bngdHwnB86zUNLdLANBXUlLlm3uO/FOmqqK+WUs3FGnzPgJ3OEXCuu6DlTQWaVPlWvnjfBqWl63E9AS3SwLgYXGJoc7lgFcRuuFpxnFkpXl7LSKA7qFRmjt2lYaGuFM9vq77YLXBaq2p+Fi2bOVMHKi0bHp8AOhcIDEg9piFlzEXA95mWRKhG4hsg4fIN+1E+eLitLu0Vuv3VKopyDrd/lJVH1rXnRaXrooIWNfdXtBp0uryZcrNnKpBozMVlxhQ2S6WGwHoKC4hQPNFeBqhG55mWZaUnuF2GQB6IxCQf+YsKWug6ptsrdpSrFIapbmirslWelym22X02saK1RqTOlFZgwcpPjGgom1lMjbDWgBC4pPi2C4MnkbohvclJkk+v+TQwRyIFDRK85aSqgaNHZymgBWnoGl2u5xe2VGzRXXBWo1IH63hedkq3FKqYCO/FwBIgQS/2yUAh8WabnieZVlSaqrbZQDojpRU+eaeS6M0j9kdoeu6D7a/Ya+2VK2XP96vYXmDlZga73ZJAFwWSPAzyg3PI3QjItBMDfA+39QTQo3SEpJolOYxle3WdUe66uZKrav4RMaylTN5kFIHJrtdEgAXxSdFzs4MiF1ML4fnGceRlZpOU0rAq2iUFhEifV13e01Oo1aVr9CUzKnKHjtAcUkBle+ucrssAC6IT46TMYbRbngaoRveZ1lSGnt1A55Do7SIEg3rujtytL5ipcalTVbmkCzFJQZUvK1chrUMQEyJT2akG97H9HJ4nmVZsuhgDniKNXaCfGdfKJM1UFsKq7V4fSGB2+OiZV33wbZVb9Leul1KzkjUsLxs+eNpqATEkoTkeEa54XmMdCMy0MEc8IaUVPlOPFW+lBSV1TRq9c5y1m1HiMoI3q/7SArrd6s+WKdxaZM0PC9bRfmlaqyNhtF8AIfj8/sU4IM2RABGuhERLKaYA66jUVrkq2+ylRYXnTOHKpvLtKFilYzfaOjkbKVkJbldEoAwY2o5IgWhGxHBGCMrPdPtMoDYNHiIfOd+Wr6Ro7W3vE6L1hdqV2md21WhF0qqGpQUSFbAis6Jbg1OvdaULVej06DB47KUOYwPa4Fo1tpEDfA6QjcigzGyMge4XQUQWwIB+U85Xf6Zs1TvWHp/c7FWFpTTmTyC7SoLfVgSbeu623PkaF3FJ6psKteAYenKHjdAlo/1nkA0SmCkGxEiOj/qRtSxfD5pQJbbZQAxwxo7QdbkY2R8lvILq5VfWCWaQke+yrrmlnXdGapoKnO7nLDKr9qg4cmjNGTAcMUlBFSUXyq7mQ+MgGiSkBJHEzVEBEI3IkdqmuT3SzbN1ICwoVFa1Ivmdd0H21O3U3XBOo1JnaBhUwaraHOpmuppsAZEA8uSAglEGUQGppcjYliWJbGuGwib9o3SVu6gUVq0KqluVFIgWf4oXdd9sPKmEm2sXC3LLw3Ny1ZyZqLbJQHoA3HJjHIjchC6ETGMMbIyM90uA4g+nTRK211Go7Rotatlv+60KF7XfbB6u06ry1ao2TRqyISByshJdbskAEcpIYkmaogcsfExN6KDMbIyBoiXV6CPBALyz5wlZQ1UXZOt1ZuLVVrT6HZVCLNYWtfdnqOg1pZ/rEkZxyhrRIbiEuNUUlAufqkAkSk+OS70/5fBbkQAQjcihuXzSVkD3S4DiAo0SottsbSu+2CbK9dpRPJYDR6Yo7hEv4ryy+TQkR+IOIlpCexMgIjB9HJEFCspWYpjewig11JS5Zt7rvxTjlNFfbOWbijS5n0E7lgTa+u6D7a7brsKarYqITlew6dkKy4xNn8OfeGjjz/QtbdcpVMumKFxJ47QG4tf63C5MUYP/e4BnXz+Cco7bbyuuP5L2r5z2xFv988vPq3TP3uKcmeP1+eu+rRWrfukw+U/e+huTf+fYzT7whP1yqv/6HDZf9/6j6695aqjfmzwLstv8f8WEYXQjYhjZbBfN9AbNEpDq1hc132w0sb92li1RlbA0rC8bCVlJLhdUkSqq69T3qQpuvu2n3V6+e///Fs9/cJ8/eyH9+of8/+t5KRkXXXTFWpsbOjyNv/zxr/081//RDdfe4v+/cyryps4RVfedIVKykokSQuWvql/vfaK/vTIc/rBzf9PP7znVpVVhJZKVNVU6cHH79fdP7in7x8sPCMxJZ4maogohG5EFOM4UiahG+iRwTk0SkMH7dd1x7K6YI3Wlq9QUEENmTBQ6YNT3C4p4sydfZa+963bdN6ZFxxymTFG8//6lG782s06Z855yps4RQ/e/WsVlRTpjSWvd3mbTz33hL548eX6wme/qInjJulnP7xPSYmJ+tu/npck5e/YolNmzNLUKcfrs+ddrNSUNO3as1OSdP/D92jepV/V8Jzh4XnA8ISE1HiaqCGiELoRWSxLFqEb6J5AQP5TTpd/5imqdyy9v7lYKwvK1cT6VSi213W3FzRBrSlfrtpgjQaOytTA0Zk0Zuoju/bsVHHpfs0+6fS2Y+mp6Zp2zDR9snpFp+c0NTdp7cY1Hc7x+XyafdLp+mTNx5KkvIlTtGbDKlVWVWjNhtVqbGzQmJFjtGzlR1q7ca2u+uLXwvvA4LrEVGamILKwGAIRxbIsaQDN1IAjoVEajqS0ulGjs1PltwKyDcsMNlWu0eiU8Ro4aLDiEgLav7VUjs1/mqNRXFosSRo0cFCH44MGZrdddrDyijLZtq1BWdkdz8kapK078iVJZ8yaq4suuEQXX3mhEhIS9cCdDykpKVk/vu+HeuDOh/TsS3/Wn16Yr6zMLN3zo/s1afzkMDw6uCkhlenliCyEbkQcKz5eSkmVamvcLgXwnpRU+U48Vb6UFJXVNGpVQblqGwlUONSu0jqNzk5VWlx6TG0ddjgFtVtVF6zVyLSxGjZlsAo3lyrI/x9P+s5139N3rvte2/e/efJXmn3S6QoEAnr0qYf16vNvaeHbb+n7d31H/3rmVRcrRV+LT46Tj67liDBML0fEMcbIOuhTcwAtjdLmdGyURuBGVyrqmmQ7jlJjuJlaZ4obC7W5cq38cT4Nn5KtxDSmsfZW9sDQaHVJaUmH4yWlxW2XHWxAZpb8fr9KyjqOhJeUlSh74OBOz9m6I1+vvPoPffebt+rDFe/rpBNO1sABA3XhOZ/R2o1rVMOH9FElkfXciECEbkQeY2R18csaiEntG6WV0SgN3VffZCs9LtPtMjynJlitdRUfy5atnEkDlTYo2e2SItLI4aOUPXCw3lv2Ttux6ppqrVy3UtOnzuj0nPi4eB2be1yHcxzH0XvL3tH040445PrGGP2/n/9A//udO5WSnCLbcRQMNktS25+OY/flw4LLElLj3S4B6DGmlyPiWD6fNIjQDSgQkH/mLClroOqabK3eXKzSmka3q0IEYV1315qcJq0uX6a8jOM1aMwAxSXFqWxXpdtleU5tXa0Kdu1o+37X3l1av2mdMjIyNTxnuK6+/Bo9+seHNWbkWI0YPlIP/e5BDRk0ROfOOa/tnHnf+qLOO/N8ffWyqyVJ13z5On3/7lt0XN7xOv6YaZr/1z+orr5en//MFw+5/xdeeU5ZAwbqf844R5I08/iZ+s0Tv9Ina1Zo8XuLNHHsJKWn0TAwmiSlJbCeGxGH0I2IZMUnsK4bMY1GaegLu8tC67pT49JVybruTm2oXKWxaZM0YPBAxSUGtH9bmQwN1tqs2bBKX/7mZW3f3/PQ3ZKkSy/8gh646yF946vXq76+Tj/6+Q9UVVOlmcefqPkP/0UJCYlt5+zcU9C2z7Ykffrcz6qsolQP/f5BlZQWK2/SFD398DOHTEkvLi3WY/Mf0d+feqXt2PHHTNe1867TNbdcqYEDBunBux4K0yOHGwLxfvnj/G6XAfSYZVgUgQhkjJGzdqXMzh1ulwL0LxqloY9dMG2YShoLtbt2h9uleNqQpGEanjxazQ1BFW0pVbCJKctAf0vJStLgcVlulwH0GCPdiEzGyMoaROhGTPFNPUEaMUq2bbR6RxnrttEnWNfdPUX1e1UXrNOEtFwNmzJYRfmlaqxpcrssIKYkpiXIOEYW3csRYWikhohk+XyyBnXexRSIOu0ape2hURr6WGl1oxL9SfJbfA5/JNXNFVpXsVLG52jopEFKHZjkdklATEnOSCBwIyIRuhGxrISWdd1AtAoE5D/ldPlnnqJ6x9L7m4u1qqBcTUHH7coQRXaX1cmyLLYO66Ymp0FryparwalX9tgsDRjOzw3oD4EEvwLxfDiIyMQzFxHLtE4xp5kaohCN0tBfymub5DiO0mim1m2OHK2vWKnxabnKyBmguMSAireXy/CfFAibpPTE0Hs/OpcjAjHSjchljKyBg9yuAuhbKanyzT1X/inHqby+WUvWF2nzPgI3wiu0rpttlXpqa/VG7avfreTMRA3LzZY/jrdVQLgkpSe4XQLQa4x0I2KF9utmXTeiB43S4JbSmkaNHJjCft29sK9ul+qDtRqbOknDpwxW4ZZSNdU1u10WEF2sUOhmlBuRio9kEdGshAQpjfV0iHA0SoPLdpW2rutOc7uUiFTRVKYNFaskv9Gw3GylDKDBGtCXElLi5fMTWxC5ePYiohljZA3OcbsMoHcCAfln0SgN7juwrpsp5r3V4NRrddlyNTqNGjw+S5lD+QAD6CtJ6QkyhnVWiFxML0fE8w3Okb11s9tlAD1CozR4Deu6j54jR+sqPtbE9CkaMDxTcYkBlewoF1kBODpJ6YlulwAcFUI3IpplWTIDsqRAnBRkDR0iQEqqfCeeKl9KikprGrW6oFy1jayhhfsOrOv2yza22+VEtC1V6zU8ebSGZA1TXGJARVtKZTODBegVn99SQkoc67kR0ZhejohnWZasbBqqwft8x58g3xlny05I0sodZXp/czGBG55xYF03fTL6wp66Au2o2aK4pICGTRms+CTGOYDeSEyjgRoiH6EbEc84Duu64W2tjdJGjNae8jotXEejNHgP67r7XlljiTZWrpEVkIbmDVZyBlNkgZ5KSk+UYf0VIhwfuyLiWT6fNITQDQ8KBOQ/cZY0YKDqmmyt3lys0ppGt6sCulTfZBO6+1i9Xau1ZSuUN+B4DZ6QpfI9VaosrHG7LCBiJGcmyPIx0o3IRuhGVLDi4qXMAVJFudulAJIka9xEWZOm0CgNEYV13eERVFBryldocsaxyhqREWqwVlAh8ZoAHFZcYkCBeOIKIh/TyxEVjOPIlz3E7TKAUKO0uefKn3esyuubtWR9kTbvI3AjMrCuO7w2Va7V/vp9Sh2YrKGTBskX4G0YcDgpA5LYKgxRgVd7RAfLkpUz1O0qEONolIZI9//bu/Pwussy/+Of53vWnD0nOdnTpmmSJukKFLCyCYKojKLjBbiNso2jMOqgI+6IC4KIOuMGDkpRR5QZZdxGNp0fqKCsdoGW0pWuSdvsycl2cr6/P9KkDW3plpPvWd6v6+pFc9Y7pT05n/M89/3Q15152wY2a2v/JvmCXlW1JOTxs4oHHE6guMjpEoBpwSs98oIxRorEJJ9PGqZnFjOsrELWkqWyPB5t6xjQmu09Gh3jeCDkpsFR+rozbe9wuwbHkmqMtKqqJaHdGzs12MvPLuBAbq9LvoDH6TKAacFKN/KGbdsybDHHTHK75Vp2llxLX6XBtNFfXtyjlS91EbiR0zr6hlXkCshlXE6XktcGUn16rvtvGlNK5Y0lipQFnS4JyCqBmJ+t5cgbhG7kD9uWKWeLOWaGqW+Udf5FsotLtL6tT4+uaWMyOfICfd0zJ5Ue0aqup5UcG1DJrJhKZkUlhjQDkthajvzC9nLkDWNZUlmF5HJLY/TRIkOCIVmnvlpWMKiOvmGt2tpF3zbyStfAiNL2eF93zwgnQsyEF7pXqS7UoHgiIY/fo90bO5QeY4UPhctyW/KHvOPtg0AeIHQjrxjLkimvkL1zu9OlIA9Zi0+WqmZpLG1r1ZZObe9MOl0SkBGDIwxTm2lb+jdoIDWg2nCdqlrK1LZ+r1LDHNuGwhSI+p0uAZhWhG7kFTudlqmsIXRjejEoDQWms39INXHO655pe4Z2aSiVVEOkRdWtZWrf0KGhvhGnywJmXKCY0I38Qk838oqxLJmycsnN50mYBgxKQ4HaPtHX7aave6b1pXr0fPezSmtMFU2lCpUGnC4JmFHGMgpE/GwtR14hmSDvjAdvtpjjxJj6RpmmVtmW0fpdvdrY3qc0LZYoEB39433dIU9EPaP0dc+0kfSIVnY9o5boQiXqiuX1u9W5vdfpsoAZURTxyVgEbuQXVrqRd+x0WqaqxukykKuCIVnnvk6ulgXqSo7q0TXtWt9G4EbhGRxJK+KNOV1GAUtrbc9KdQ7vVaQ8pPKGOEEEBSFYXCSbH7rIM6x0I+8Yy5IS+7aYp5gqjaPHoDRgP/q6s8Pmvhc1WFStqugsVbUk1L6+Q6kR/n8gPxkzfj43HzAh37DSjbw0PsWcM7txlMoqZL3u72TVzNaOrqT+7/k2AjcKHn3d2aNtcIc29r4gt8+lqtaEfEGv0yUBGVEU88tyEU+Qf/hbjbw0PsW82ukykO0YlAYc1oF93XBez2iX1nSvkG3ZqpxXqmC8yOmSgGkXKgnIttlajvzD9nLkJbaY40gYlAYc2eDwmCLeqHaw8SMrDKeHtLrzabXEFqusPq5uf6+6dvY5XRYwLSyXpUCUqeXIT4Ru5K2JLeb2jm1Ol4JsEgrJOvXVsgJBdfQNa9XWLg0M88EMcCidAyOqiQdlGZfS9HVnhbTSer77b5obaVa0slieIo/2bO5i8BRyXjDO2dzIX2wvR95iijlezlp8sqyzz9eYt0grtnTqL+v3ELiBV7C9c4C+7iy1sfcFtQ3uUCDmV2VzqVwe3tIht4VKOJMe+YuVbuStyS3mPp80POx0OXBSWYWsJUtleTza1jGgNdt76NsGjkJH33hfd9gTUS/ndWedncmtSqYGNCfUqKrWMrWv79BIctTpsoBj5va65A/5nC4DyBg+FkXeM9WznC4BTnG75Vp29vigtDExKA04DoMj433dyE7dIx1a271KxiVVNScUKGaLLnJPsKSIAWrIa4Ru5D2rts7pEuAAU98o6/yLZBfH9eKuXj26tl0d/ex4AI5VZ/+Iilzjfd3ITkPppFZ1Pq0Re1jlc0sUrQw5XRJwTMIlQadLADKK0I28ZoyRCYWkWLHTpWCmhMKyzn2dXC0L1JUc1aNr2rW+jcnkwPHa39cddroUvIK0xvRc17PqG+lRvDqqxJxiMQQaucAb8MjjdzO1HHmNnm7kPTudllUzW+lu+hHznbX4FKm6VmNjtlZu6dSOTs45Ak7U/r7uqHpHu50uB0fwYu/zqgnUqSxeKbfPrfYNHUqnaKlB9po4m5vQjXxG6EbeM5YlVddKa1ZJad545CUGpQEZNTSSVtgblfgcKydsT25RcmxAdcEGVbeWqW39Xo0OclIDslMoXkTgRt5jezkKgnG7ZSqqnC4D041BacCM6OwfVoC+7pzSObxHL/SuknGPD1grijJgDdmnKOqTy8PrCvIfoRsFwU6nZWpnO10GppGZ2yjrAgalATNhe2eSvu4clEwN6LnOZ5RSSuUNcUXKGbCG7BIuDTK1HAWB7eUoCMaypJKE5C+ShgadLgcnIhSWdeoyWYGgOvqGtWprlwaG2TYJZNLevmH6unNUSimt7npa86ILVFIbldfv1t6t3RI5Bw5zeSwFYn62lqMgELpRUEzNLNkb1jldBo4Tg9IA5wyNjIdu5KZ1Pc9pdrBeJaXl8vjdat/QqTStOHBQqCTgdAnAjGF7OQoKZ3bnqLIKWa/7O1k1s7S9I6n/e76NwA3MsM7+YQXc9HXnspcGNmlr/yb5Ql5VtSbk8bP2AudEEpzNjcJB6EbBMMbIBAIy8VKnS8HROsSgtFVbGZQGOIG+7vywd7hd63qek8tjqaolIX/E53RJKED+iE9uH2dzo3AQulFQ7HRapq7e6TJwFMzcJgalAVnkwL5u5LaBVJ9Wdz+rMY2porFEYVYcMcMiiaDsNIMFUDjYV4SCYixLqqiS/H5paMjpcnAoDEoDshZ93fkjlR7Rqq6n1BJbpNLZMXn8bnVu63G6LBQABqihELHSjQJky5o1x+kicAjW4lNknf1ajXmL9LctnfrL+j0EbiCL7O/r5u1DvljbvUodQ3sUKQuqorFExkUQQmaFS9lZgcLDT00UHGMsmdn1ksVf/6zBoDQgJ+zv6444XQqm0Zb+9dox8JL8EZ+qWxJy+xiWh8wJlwVZ5UbBIXWgIBmvV6ay2ukywKA0IKfs7+smdOeb9qGdWt+7Ri6vS1UtZfKHvE6XhDwUiPnl9vChDgoPoRsFybbTsubMdbqMgsagNCA3jfd1x5wuAxnQN9qj57v/JtuMqWJeKecoY9pFyoKybQaoofAwSA0FyRhLihaP/+rpcrqcwsKgNCCndQ4Mq7p4vK87bbMrJd+MpIe1susZtcYWKTGnWJ4it7q29zpdFvKAx+dWUcTvdBmAI1jpRsGy02lZHB82oxiUBuS+HR30dee/tNZ0r1DXcIei5SGVNcRlLHpwcWIiFSFWuVGwCN0oWMayZKpqJC99axnHoDQgb+zZ19cdoq87723qW6edye0KRP2qaknI5aUXF8fHclsKlwSyaoDa5ZdfLmOM3v/+9x903bXXXitjjC6//PKZLwx5idCNwmaMzKw6p6vIXy8blPb4i7sZlAbkgaGRtCKc110Q2ga3aWPvOrl9LlW3JOQLepwuCTkoUhaUsidvT6qtrdXPfvYzDQ4OTl42NDSke+65R7NmzXKwMuQbQjcKnlU3V8qiT17zxaEGpXX2jzhdFoBp0DkwrIA7JIu3EQWhZ7RTa7tXynbZqpyXUDBe5HRJyCHGSJGyUFatck84+eSTVVtbq/vuu2/ysvvuu0+zZs3SSSedNHlZOp3WzTffrDlz5qioqEiLFy/Wz3/+88nrH3nkERlj9OCDD+qkk05SUVGRzjvvPO3evVv333+/WlpaFIlE9M53vlPJZPKoHxf5g5+WKGjGGBmfX6aiyulS8kcoLOvc18nVPF+dAyN6dE271rf1KU0bF5A3Jvu62WJeMIbSg1rd+bSG00Mqq48rVhV2uiTkiFBJQJYr+wL3hCuvvFLLly+f/Pquu+7SFVdcMeU2N998s370ox/pjjvu0PPPP6/rrrtO7373u/Xoo49Oud2NN96ob3/723r88ce1bds2XXrppfq3f/s33XPPPfrf//1fPfTQQ/rWt751zI+L3GdsJhqgwNnptNTfp7E//Z/TpeQ8a/EpUnWtxsZsPbe9m75tII+98aQqtQ/u1M7kVqdLwQxriLQo6i1Wf2dSe7d0y+ZTVbyCmgXlcvtcWbfSffnll6u7u1t33nmnamtrtW7dOklSc3Oztm3bpquvvlqxWEzf+973FI/H9fvf/17Lli2bvP/VV1+tZDKpe+65R4888ojOPfdc/f73v9drX/taSdItt9yiT37yk9q4caPq68cH977//e/Xli1b9MADD2h4ePiIj4v8wZFhKHjGsqRIVKa0TPbe3U6Xk5vKKmQtWSrL49HWvQNau6OHvm0gz030de90uhDMuA29a1UdmK3y4ip5fG61b+jQ2Civ+ThYUdQvjz+740YikdBFF12ku+++W7Zt66KLLlJpaenk9Rs2bFAymdQFF1ww5X4jIyNTtqBL0qJFiyZ/X15erkAgMBm4Jy578sknj/lxkfuy+18BMEPsdFqmYR6h+1i5PXKdukwqjmtgOKVVm3fTtw0UiPHzusf7utMicBWaHcmXlEwNqC7UoKrWMrW/2KGRwVGny0KWie07JizbVrlf7sorr9Q///M/S5K+853vTLmuv79fkvS///u/qq6unnKdz+eb8rXHs3/QoDFmytcTl6XT6WN+XOQ+QjegfceHlZQqHSuWurucLicnmLlNMk0tso3R+l292thO3zZQSHZ0JFUTDyroCatvtMfpcuCArpG9GupJal50oSpbEtqzqVPJ7iGny0KW8AY88odzIzy+/vWv18jIiIwxuvDCC6dc19raKp/Pp61bt+qcc86ZtufM1OMiOxG6gX3sdFpWwzyln/6r06Vkt3BY1tJlsgJB7e0b0uqt3RoYTjldFYAZNnFed9gTJXQXsMGxpFZ1PqP5xYtV3lCizu096mnrd7osZIFoeW6sckuSy+XS2rVrJ39/oHA4rH/913/Vddddp3Q6rTPPPFM9PT167LHHFIlE9N73vve4njNTj4vsROgG9jGWJVNeqXQoLPX3OV1OVpoYlJYas/X8lk4GpQEFjr5uSFJaKa3uekZN0fmK10Tl8Xu096Uuid1PBcvtdSkYL8qJwD0hEjn8aQxf/OIXlUgkdPPNN2vTpk2KxWI6+eST9alPfeqEnjNTj4vsw/Ry4AB2Oi1753alVz7jdCnZhUFpAA7hpLq4qoqLtKLjCfq6IUmqCc5Rmb9CwwMjat/QqXSKvxeFKF4bVaQsmFOhG8gkzukGDmAsS6a6RioqcrqU7OD2yvXqs+Va+iolx6THX9ytVVu7CNwAJEk7OgdkjFHQw5nNGLd9YLNe6t8oX9Cr6tZE1k+uxvRzeSxFEgRu4ECEbuDlbMma0+h0FY4zc5tkXfAG2dG4XtzVqz+ubWcyOYApdvfu7+sGJnQM79a6nudkuY2qWhIqiubGMC1Mj2hFWCJvA1MQuoGXMZYlM6tO8nqdLsUZ4bCsc18nV/N8dQ6M6NG17VrfxmRyAIc2NELoxsEGUn1a3fWMUkqpvKFEkbKg0yVhBrDKDRwaoRs4FMuSVTfX6SpmnLX4FFlnvVYpb5H+tqVTf12/l8nkAF5R18CIgu7x87qBA6XslFZ3Pa1kql8ls2IqmR1jBTTPscoNHBo/IYFDMMbIzGmQPB6nS5kZZRWyXvd3smpmaXtHUv/v+TYmkwM4KvR140he6FmtvUPtCpcGVNFYKstFKstHrHIDh0foBg7H5ZJVn+e93QxKA3CC9vd1H/64HeCl/o3a1r9Z/rBXVa1lcvsYsJZvWOUGDo9XPOAwjDHSnAZp80ZpZNjpcqadmdsk09QiW0brd/VqYzt92wCOz/BoWmFPTNI2p0tBFtsz3KbBsaQaI62qbk2ofUOHhvoY0JkPWOUGXhkr3cArsYyshianq5he4bCscy9kUBqAadPZT183jk5/qlfPdz+rMY2poqlU4dKA0yVhGrDKDbwyfjoCr8AYS2Z2veTPj3O7rSUTg9L8DEoDMG12dCXp68ZRG0mPaFXXUxpMJVVaV6x4LdPvcxmr3MCREbqBo2A1Njtdwokp3zcorZpBaQCm3+6eIfq6cczW9qxU5/BeRcqCKm8skbEIbbmIVW7gyAjdwBEYy5KpnS0FcvCM0YlBaacwKA1AZu3v6waO3ua+F7Uj+ZKKIj5VtSTk9rqcLgnHgFVu4OgQuoGjYduymlqcruKYmLlNsi54g+xoXOt29eqPa9vV2c/AGgCZ0bWvr9vw1gLHqH1wpzb0rpXb51JVa5l8Ia/TJeEoxaoirHIDR4GfjMBRMJYlU1UjhXKgX/EQg9I2MCgNQIZN9HWH6OvGcegd7dbz3StkW2lVNpUqVJIfs1TymcfvVrg0wCo3cBQI3cDRsm1Z8+Y7XcUrYlAaAKe009eNEzSSHtLqzqc1lB5UYk5cxdX8Xcpm8Rr+/wBHi3O6gaNkLEumolLpaEzq6Xa6nKnKK2QtXirL49HWvQNau6OHvm0AM268rzsqzuvG8UorrTXdKzQ33KxoRbE8frf2bO6SzXatrOIPeRWIsRsBOFqsdAPHwE6nZTUvcLqM/RiUBiCLdA2MKOgO09eNE7ax7wXtGtyuQMyvquaEXB7+TmWTeG1Uts0HIcDR4hUMOAbGsmSVJmQS5U6XItPAoDQA2WVnJ33dmD67ktu0qW+d3H6XqlvL5A14nC4JkoLFRfIFvfRyA8eA0A0cIzudljV/keTUD5uJQWnzGJQGILu07evrDtHXjWnSPdKptd0rJZetquaEgsVsaXaUGe/lZpUbODaEbuAYGcuSAkGZ2XNm/LkZlAYg2w2PphXxRJ0uA3lkKD2oVZ1Pazg9rLK5ccUq2UnhlEhZUC6vi1Vu4BgxSA04TlZTq8Z2bJdGZ2BLd3mlrMWnMCgNQNbrGhhRRWz8vG5bvE5heqSV1vPdz6ox0qri6pg8frf2bukSC64zx3IZFVexiwU4Hqx0A8fBGCO5XbKamjP7RJOD0k5nUBqAnLCzMynLWAp5Qk6Xgjy0vneN2pI7FYwXqbI5IZebt7IzJVoZlrEMq9zAceCVCjhOxlgys+ulUGa2uTEoDUAu2t/XnVtbzJ99fIWue9f1ev2CN2tp4gw98rs/Trnetm3dccudunD+m3VG7bm65m0f1taNRz4a7b9+8Au96eS36dU15+q9F/6jnnt2zZTrv/7Zb+q8xtfrosVv1f0/f3DKdb//1f/punddf+LfXJ7ZkdyiLf3r5SnyqKq1TN4iNm5mmtvrUrQsROAGjhOhGzgRti2rdeH0PiaD0gDkuFzs6x5MDqpxfoM+/pWPHvL6H37rJ/rZnT/XJ2/7mO5+4E75A3598LKPaHho+LCP+dD//F7fuOFb+sd/vVL/+Ye71DS/QR+89CPq3NMlSfrjg3/Wg794WN/+72/og5+7Rl+67hZ1d3RLkvp7+/XdL/+HPv6Vj0z795oPOof3al3PKhm3VNlSpkDU73RJea24JiKRt4HjRugGToCxLFmJ8mk7QoxBaQDyQdfAiALuUE6d133G+ct0zafep3MvOueg62zb1k+/91+66iPv1WvecJYa5zfoC9/5rPa07dUj9//psI/5kzvu1Vve/Sa9+Z0XqX7eHH3yto/JX+TTr+/5rSRp84sv6eQzTlLrkha9/u8vUDAc1I6tuyRJ//757+ptV7xFFTUVmfmG80BybEDPdT6jlD2isoa4ohW0NGSCP+xTKB5glRs4Abnz0xDIUtNyhFh5pazX/Z2s6lna3pHU/3u+TTs6k9NXJADMoIm+7mCe9HXveGmnOnZ36LSzl05eFoqEtODkVq1+6rlD3md0ZFQvrFyn0885dfIyy7J02tlLterp8fs0zW/Q2hUvqLe7V2tXvqDhwWHVzqnWir+u1LpV6/T2f7wks99YHkgppdVdz2gg1ad4TVSldTFWZKeTkUpnxzgiDDhBNMEAJ8hYlux9R4jZWzYd253dXrlOe5UUi2tgOKVVm3fTtw0g5030dYc9UfWP9jpdzgnr2N0pSSpJxKdcHk/E1bG745D36e7s1tjYmOIvv09ZXFs2bJUkLTvvdL3hkgv1nguulq/Ipxu//RkVBYp08/W36cZvfVo/X/4/uvf7P1csHtOnv3695jbXZ+C7yw/rep7TrOAclZZUyONzq31jp9Ipho6eqGh5SG4fR4QBJ4rQDUyTYz1CzDQ0yTS2yJbRi7t6tamdvm0A+WNkdDx079KRh40Vsn+6/ir90/VXTX79H1+9S6edvVRut1t3ff2H+tkff6Q/PfS4Pnftl/Sff7jLwUqz39aBzUqmkpoVrFdVS0Lt6zs0OkSL1vFyeVyKVUUI3MA0YHs5MA0mjxCb13rkG4cjDEoDkPc6B0YUzLG+7sMpKRtfre7Y0znl8s49nSopKznkfWLxmFwulzpffp/dnZOP93Jb1r+k+//7QX3gE/+oZx77m05atkTFpcW64OLz9MKqdRroH5iG7ya/7R1u17re52R5jKpaEiqK+JwuKWeVzIqeUOccgP1y/ychkCWMsWTNniPFDv1mSpoYlHYeg9IA5L2dXYN509ddPbtKJWUleupPz0xe1t83oOeeXaOFpy445H08Xo+aF8/Tk398evKydDqtp/70jBYtPfg+tm3ryx+9Vdd98YMKhAIaS48plRr/+TDx3/QY26WPxkCqT891/01jSqm8sUThRNDpknKOP+JTsLiIVW5gmhC6gWlkp9NyLTrp4KFqDEoDUGDaugcn+7pzQbI/qXWrX9S61S9KknZs3al1q19U2/Y2GWP0jn+6VD/4+g/16AN/0oY1G/W5a7+oREWpXvOGsyYf4wN//yHd+/2fT379rvdfpl/+52/025/9Tptf3KKbP3abBpNDetM7Ljro+X/5n79RrCSmsy88U5K0+LRFeupPz2j108/pnjvuVf28OoWj4Qz/KeSPVHpEq7qeVnJsQKWzYyqZFWXA2tEyUukshqcB04mebmAaGcuSHQrL1M2VvXnDvkFpy6RY8figtE271TnAoDQAhSGX+rrXrHxB73/LBye//sZnvyVJ+rvL3qAbv/0ZvfeD79JQclBf/sit6uvt15LTF+mb935NPv/+7cvbt+xQd2fP5Neve+v56uro1h1f+b46dneqaUGjvnXv1w7aXt6xu1N3feOHuut3d0xetuDkVr37mrfrX975MRWXFuvGb38mU996Xnuhe5XqQg2KJxLy+D3avbFD6THC5CtheBow/YzNx1jAtLPHxpTeslFmToMkoxfberWxvU/8awNQSE6ZE1d5zK8VHU/IFi+AcE6Zv1I1wTqlhsfUtn6vUsNjTpeUlVxel2oWlMuyCNzAdGJ7OZAJxsg1t2nKoDQCN4BCs2Oyr5tt0XDW7qFdWt+zRi6vperWMvnDXqdLykoltQxPAzKB0A1kgLHG/2lt2d3PoDQABSvX+rqR3/pSPXq++1mlNaaKplKFSgNOl5RViqJ+hqcBGULoBjLEtm0tnFUsN1u0ABSwkdG0wu6I02UAkqSR9IhWdj2jwVRSibpixWv4uylJlssoUcfwNCBTCN1Ahhhj5HVbaq5mhQdA4eoaGFXQE5ZhdDSyRlpre1aqc3ivIuUhlTfEZQr8A/J4TVSW22KVG8gQQjeQQcYYzS4NqjhI7xiAwrSjKzne1+2mrxvZZXPfi9qZ3KaiqF9VLQm5vS6nS3KEP+JTOBEkcAMZROgGMsyWtHh2MYNJkHf++65v67p/uEiXntWsd5+/RF/6yFXavmXjlNuMDA/p9ls+rXeet1CXnDlPX/7Y+9TVsecVH9e2bf3n7bfpPa87RW97dYM+84F3aOfWzZPXj44M62uf/bAuPbtF//TWs7XiiT9Nuf99P7pD37v1s9P3jeKE7O/rZhsvsk/b4HZt7H1Bbp9LVa0J+QrsQ3JjGSXqitlWDmQYoRvIMMsYBX1uNVbwhhP55bln/6qLLnmvvnr3r/TF796jsVRKN1z7Lg0NJidv8/2vfV5P/vH3+vgtd+jmO/9bnXvadfPH3veKj/uLH96u3/5sua751Jd12w9/I39RkW7453drZHhIkvTAffdo49rV+uryX+rCt75Tt336g5NvGNt2bNWD/3OP/uGa6zP3jeOYTZzXDWSjntEureleIduyVTmvVMF4kdMlzZji6ohcHraVA5lG6AZmgDFGjRVhRQMep0sBps3nv/2fOv/Nl2r23Hma09Sqf/n817WnbYc2rF0lSRro69XDv7pXV3/kBi0+7Qw1tCzShz/3Na1d+bReWP3sIR/Ttm39+p4f6NKrPqhXveZCzWls0XWf/zd17mnXXx95UJK0bfN6nXb2BZo9d54uuvS96unqUG93pyTp9ps/pcs/+EkFQmxlzib0dSPbDaeHtLrzaQ2nh1RWH1dxVf6/hvhCXkXLQwRuYAYQuoEZYks6qS6uAp/Vgjw20N8rSQpHYpKkDWtXK5Ua1eLTz5y8Te2cBiUqqvXCqmcO+RjtO7aqq2O3lpx+1uRlwXBETQuW6IVV40F9TlOr1qx4SsNDg3r2L48qXlqmSCyuR373P/J4fVp23hsy9B3ieO2krxs5IK20nu/+m3pGOhWtDKtsbv4OWDNGSsxhWzkwUwjdwAyZ2GY+r4otlsg/6XRad972ebUsPlWzG5olSV0du+X2eBUKT/07HyspVfdh+ron+r1j8dKp94kn1NWxW5J0wZsv05ymFl1zyWv1X3d9S9ffcrv6e7v1kztu0z9d/0X9+Lu36n0Xn6kbrn2XOnbvmu5vFcdhV/eg0rZNXzdywobeF9Q2uEOBmF+VzaVyefLv7XKsOiK318UqNzBD3E4XABQSY4zqy0Jq7xlUZ/+I0+UA0+aOWz6trRvX6Ss/uC/jz+X2ePSBT9w05bJ/u/EjetPbr9Smdc/pr488qG/+7CH94oe363tf/Zw+9dX/yHhNOLKR0TGFPVHtGtzudCnAEe1MbtVgakB1oUZVtZapfX2HRpKjTpc1LbxBD9vKgRmWfx/dATngpLq4XHm6ZQ2F546vfEZP/fkPuul796q0vHLy8uKSMqVGR9Tf1zPl9t0dexUrSRzysYr3Xd7duXfqfTr3qLik7JD3WfXU49q66UVddNnlWv3MX7T0jPPkLwrozAv+Ts8985cT+dYwjbqT9HUjt3SNdGht9yoZl1TVnFCg2O90SSfOSIm6YqerAAoOoRuYYcYY+T0utVazzRy5zbZt3fGVz+gv/+8B3XTHvaqonjXl+oaWhXK7PVr55GOTl23fslF72naoedEph3zM8upZKi4p08on/zx5WbK/Ty8+t0LNi04+6PYjw0O64yuf0bWfukUul0vpsbRSqfHVqLFUSumx9HR8q5gGOzrp60buGUontarzaY3YwyqfW6JoZcjpkk5IcXVEHr+bVW5ghhG6AQcYYzQ7EVIi4nO6FOC43X7Lp/XI7/5H/3rTt1QUCKpr72517d2t4aFBSeMD0C64+DL94Otf0KqnHteGtav075//qJoXnaLmhfsD9Pv//jX6y//dL2n838ab33mV7v3Bt/TEow9py/q1+voN/6J4olyves2FB9Xws+//u04541zNbV4gSWpZvFR/+b8HtHn9Wv323rvVsnjpDPxJ4Gjs6h6UTV83clBaY3qu61n1jfQoXh1VYk6xcjGz+sM+xSrCBG7AAfR0Aw6xbVtLZsf1yJo2jY4xPRS55/6f/1iS9Kn3XTrl8g9/7ms6/83jl1390c/JWJZuvv59Gh0Z0cnLzjmoH3vHSxs10N83+fXb3vsBDQ0m9e2bPqGBvl61LjlVn//Wj+X1Td3a+dKGF/Tnh3+rb/70wcnLzjj/Iq1+5i/6xFVvU3Vdvf71pm9N6/eMEzNMXzdy2Iu9z6smUKeyeKXcPrfaN3QoncqN3TSWy1JZ/fi0ckI3MPOMzVkBgGPStq1dXUn9bUuX06UAQMYtrS9RWdSnFR1PyBZvP5Cb4r6E6oINGkul1bZ+r0YHU06XdERlc+MKxPwEbsAhbC8HHGQZo+p4UJWxIqdLAYCM239ed273xaKwdQ7v0Qu9q2Tc4wPWiqLZPWAtXBpQsLiIwA04iNANOMy2bS2aXawir8vpUgAgo3Z2jfd1hzwMkkRuS6YG9FznM0oppfKGuCLl2flBksfnVnxWTGxsBZxF6AYcZoyRyzI6eU6cg3QA5L3h1JgihG7kgZRSWt31tAZS/Sqpjap0dkxZ9YPcSIm540PfWOUGnEXoBrKAZYxiAa/mVTHVF0B+6x7gvG7kl3U9q7V3sE2h0oAqmkplubLj7XVxVUTeIg+BG8gC2fGqAEDGGDVURJQIc4wYgPw10dcdoK8beeSlgU3a1r9J/pBXVa0JefzOHhDkD3sVrQgRuIEsQegGsoht2zppTol8Hv5pAshPE33dYbaYI8/sGW7Xup7n5PJYqmpJyB9x5kN0y2UpUR935LkBHBrv7IEsYoyR22V0cl2J06UAQMYMp9L0dSMvDaT6tLr7WY1pTBWNJQongjNeQ2ldTC63xSo3kEUI3UCWsYxRPORVY0XY6VIAICO6B0bo60beSqVHtKrrKQ2ODah0dkzx2pn7gClSHuJ4MCALEbqBLGSMUVNlRPGQ1+lSAGDa7aKvGwVgbfcqdQztUaQsqIrGEhlXZoOwP+RVvIaBrEA2InQDWcqWdMqcEnnd/DMFkF92TPZ1ExCQ37b0r9eOgZfkj/hU3ZKQ2+fKyPO4PJbK5tLHDWQr3s0DWcoyRh63pSWzi50uBQCm3XBqjGFqKAjtQzu1vneNXF6XqlrK5J/uXWxGKpsbl0UfN5C1CN1AFrOMUVm0SA30dwPIMz0Dowp5IvR1oyD0jfbo+e4Vss2YKuaVKlQSmLbHjldH5At6CdxAFiN0AzlgXmVEZRG/02UAwLTZ2U1fNwrLSHpIq7qe0dDYoBJzilU8Df3XgWK/ohVhAjeQ5QjdQI44eU5cQZ/b6TIAYFrs6qSvG4XHVlpruleoa7hD0fKQyhriMtbxBWaPz61EXbFs257mKgFMN0I3kAOMMbIso1Pnlsh9nD+cASCbpCWN0NeNArWpb512JrcrEPWrqiUhl/fYBqwZy0wGdla5gexH6AZyhGWMgj63ltQxnRRAfuimrxsFrG1wmzb2rpPb51J1S0K+oOeo71taF5PH7yZwAzmC0A3kEGOMyqN+NTJYDUAeoK8bha5ntFNru1fKdtmqnJdQMF50xPtEyoIKxQMEbiCHELqBHGOM0byqqMqjDFYDkNvo6wakofSgVnc+reH0kMrq44pVHf6DdX/Yp3gtLRlAriF0AznItm2dVBdXyM9gNQC5i75uYFxaaT3f/Tf1jHSpuCqiRH3xQQPW3D6XyhtoMQNyEaEbyEH7B6uVyu1iexmA3EVfN7Dfht61akvuULC4SJXzSuXyjL9Vt1xGFY2lDE4DchShG8hRljEq8rp0MoPVAOQw+rqBqXYkX9LmvvXyFLlV1Vomb8Cjsvq43D4XgRvIUYRuIIdZxigR8au5iq2ZAHITfd3AwbpG9uqFnlUyLqmqJSF/xEfgBnIYoRvIccYYNVSENas06HQpAHDM6OsGDm1wLKmdya2SROAGchyhG8gDtm1rYW1MZREmmgPIPRN93aKvG5gU9kRVE6wjcAN5gNAN5IGJH8in1McVKfI4XA0AHJtd+/q6g2527ACS5HcVaW6k2ekyAEwTQjeQJ4wZn2h6ekOp/B6X0+UAwFHbOdnXzRZzwG08aoy0yhKTyoF8QegG8ohljDxuS6c3lMpt8YMaQG6grxsYZ2RpbqRZHssrY3ibDuQL/jUDecYyRkG/W0vnlogPyAHkip7kqEKesOjrRiGbG2lS0B1ihRvIM4RuIA9Zxqgk5NOiWcVOlwIAR2VnV1KWcdHXjYI1OzRXEU8xgRvIQ4RuIE8ZY1RbElRjRdjpUgDgiCb6ukNsMUcBqgrMUqm/nMAN5ClCN5Dn5lVFVR0POF0GALyi8b7uNH3dKDhl/kpVBmqcLgNABhG6gTxn27aWzC7mDG8AWa8nOaIwfd0oIMW+UtWG5jhdBoAMI3QDeW5iq9rS+hKVhHwOVwMAh7era5C+bhSMsCeqOaFG2bbtdCkAMozQDRSA8TO8pdMaShQLeJwuBwAOaUdnkr5uFISAO6SGSLMk0ccNFABCN1AgxoO30emNCYX9bqfLAYCD7O/rjjhdCpAxPpdfjZFWGVkEbqBAELqBAmIZI5dl9KrGhAI+l9PlAMBBepKj+0I3YQT5x2N51BSZL5dxEbiBAkLoBgqMZYw8bkvLGhPyewjeALLLrn3ndQfo60aecRuPmiIL5LE8BG6gwBC6gQJkGSOfx6VXNZbK6+ZlAED2mOjr5ugw5BOXcaspOl8+l1/G8HMXKDT8qwcKlGWMAj63XtVQKreLT9wBZAf6upFvJgK331XECjdQoAjdQAGzjFGoyKPT55bKZfFGAEB22N/XDeQ2l3GpKTpfRa4AgRsoYIRuoMBZxigW9OrU+hKRuwFkg/193SGnSwGOm2VcaowQuAEQugFo/DixkrBPpzWUyuKNAQCH7e/rZrUbuckylpoirQq4gwRuAIRuAOOMMSoJ+XR6I1vNAThrf183w9SQeyxZaoy0KuAOEbgBSCJ0AziAMUbxoFenNxC8ATirJzmqECvdyDGWLDVEWxV0hwncACYRugFMYYxRcdCrZY0JuQneAByyqzspF33dyCFGlhoiLQoRuAG8DKEbwEGMMYoEPFrWlOA4MQCOoK8bucSSpYZIs0KeCIEbwEEI3QAOyTJG4SKPljUm5CF4A5hhaZu+buQGl3GpMTpfYU+UwA3gkAjdAA5rMng3lcnj4uUCwMzqpa8bWc5tPJoXXaAgQ9MAvALeRQN4RZYxCvndenVTQl43LxkAZg593chmHsurebEF8nMON4Aj4B00gCOyjFFwX/D2e1xOlwOgQGzvoq8b2cln+dUcXSif5SNwAzgiQjeAo2IZo4DPrTPnJRT0uZ0uB0ABSKfp60b28bsCmhdbKI/llTG8lQZwZLxSADhqljHyelw6c16ZYgGv0+UAKAD0dSObBN0hNUcXyG3crHADOGqEbgDHxDJGLpfRsqaEEhGf0+UAyHO7egb39XUHnS4FBS7siagpOl+WcRG4ARwTQjeAY2YZI8tIp80tVXU84HQ5APLY9s6BfX3dbDGHc6LeYjVEWmVkEbgBHDNCN4DjMvGm46S6uOaUMVkYQGak09Iofd1wUImvTHPDzTIyBG4Ax4XQDeC4Tbz5mF8TU0s1b4gBZEbPIH3dcEZloFZ14QZJInADOG6EbgDTYm55WItnF4u3JACm267ufX3dLvq6MTOMjOpCDaoK1I5/TeAGcAII3QCmTU08oFPnlshl8eYEwPTZsa+vO+RlRw0yz2Vcaoy0Ku5LOF0KgDxB6AYwbYwxSkT8enVTQj43Ly8ApsdYWhodSyvCFnNkmNfyqTm2SCFPhNVtANOGd8UAppUxRuEij85qKVekyON0OQDyRE9yVCGGqSGDAu6QWmKL5LP8BG4A04rQDWDaWcbI67Z0xrwyVUT9TpcDIA/Q141MinqLNS+6QC7jJnADmHaEbgAZMXGW99K5pZpbHna6HAA5bid93ciQhL+CI8EAZBShG0DGTLx5aamOavHsYjFfDcDxSu3r6w676evG9KkJ1mlWqF7GELgBZI7b6QIAFIaaeEAhn1tPberQSCrtdDkAclBPclTxMCvdOHEu41Z9uElh5gQAmAGsdAOYEcYYRYNendVcppCfz/sAHLu2fX3dRfR14wT4XQG1xBYp7Imyug1gRhC6AcwYyxj5PC6dOa9MiQgD1gAcm4nzusMcHYbjFPOWqCW2UF7LR+AGMGMI3QBmlGWMXJbRaXNLVF8WcrocADlksq+bLcE4DlWBWZobmScji8ANYEYRugHMuImBNa01MZ0yJy43E9YAHKXe5Cgr3TgmLuNSQ6RFFUXVkkTgBjDjCN0AHFURK9JZLeUK0+cN4Ci0dQ/KZbnp68ZR8buK1BJbrIgnRtgG4BhCNwBHGWNU5HXpzOZyVRUXOV0OgCy3nb5uHKWYN66W2CJ5LS+BG4CjCN0AHGcZI8tIJ88p0fyamHhvBOBw6OvG0agK1GpupHlf/zZvdwE4i/2cALLCxCpEXSKo4qBXT2/q0NDomMNVAchGvclRFYdY6cbB3Maj+nCTQvt2QrDCDSAb8NEfgKxijFEk4NHZLeUqDfucLgdAFmrroa8bB4t4YppfvEQhT4SwDSCrELoBZB3LGHlcRqc3lKqhIux0OQCyzPYO+rpxIKOqwCw1RlvlMm4CN4CsQ+gGkJUmjhVrrorqtLkl8rp5uQIwjr5uTPBYXs2LLuA4MABZjXexALJeacSv17SWqyzid7oUAFmC87oR9RZrfmyJgu4QYRtAViN0A8h649vNLZ3WUKr5NVFZvLcCCt7+vu6A06VghhkZ1QTr1BBpkWVcBG4AWY/QDSAn7J9uHtJZzeUK+zl8AShk+/u62WJeSHyWX82xRSrzV0piOzmA3EDoBpBTjDEK+t06q7lcdYmQ0+UAcAh93YUn7itVS/FiFbmKCNsAcgpLRQByjmWMZKQFtTGVRXxa8VKXRlJpp8sCMMN6B0dVHKSvO9+5jUezQvUq9pXItm0CN4Ccw0o3gJw2PmStgiFrQAFq66avO9/FvHHNL16imDcuie3kAHIToRtATps403t8yFpsfBUcQEGgrzt/uYxLdaEGzY00c/Y2gJxH6AaQ8/YPWQvqNa3lioe8DlcEYCZM9HWHCN15JeKJaX7xSYr7EpJY3QaQ+wjdAPKGMUZFXpde3VSmBbUxuThbDMh7fYMpRTivOy9YsjQrWK/GaKvcxkPYBpA3CN0A8srEm7TZpUGd21qu0rDP4YoAZBJ93fkh5I5ofvFJKvWXS2J1G0B+IXQDyEvGGHk9Lr2qMaFFs4rldvEGDshH2zr6Zdu2Qqx25yQjSzXBOjVF58tjeQnbAPISR4YByFsTQ9VqSwIqj/q1cmuXdvcMOVwVgOmUSkupfed17xlqc7ocHIOwJ6rZobnyWj7CNoC8RugGkPeMMfK6LZ02t1Q7OpN6blu3Rsc41xvIF72DKUWDDFPLFS7jVk2wTqX+Ms7dBlAQCN0ACsLEm7rK4iIlIj6t3tqtXd2DDlcFYDq0dQ+qJBxTkSugwbGk0+XgFcR9paoN1stlXJLo3QZQGOjpBlBQxs/1tnRKfYlObyhV0Mdnj0Cuo687+/ksvxojrZoTbpLLuAjbAAoKoRtAwZl4s1cS9umc1nLNq4xM9n8DyD0H9nUjuxgZVRbVqLV4yeT/HwI3gELDEg+AgjURtBsqwqopCei5bd1qZ9AakJPo684+DEoDgHGsdAMoeMYY+T0unTq3VKfNLVHA53K6JADHqK17UG7LLT/ndTvOY3lUF2pUU3Q+gRsAJBnbtm2niwCAbJHe95K4oa1PG9r6Jr8GkN3cltGFi6u0bWAzR4c5xMhSeVGlKgM1MrII2wCwD9vLAeAAE1vOGyvCqmXLOZAzUmmb87odVOwtUU2wTh7LS9gGgJchdAPAIRy45Xx3z6Ce396jgeGU02UBeAX0dc+8gDuo2mC9Qp4wZ24DwGHQ0w0AhzHx5rE04tdrWsu1oDYmn5uXTSBb0dc9czyWR7NDDWqJLVbQHZTEVHIAOBx6ugHgKKVtW7Zta0Nbnzbt7tdYmpdPIJu4LUsXLq6krzuD6NsGgGPH9nIAOEqWMZIxaqqMqC4R0rqdvdrWMSCiN5AdUuk0fd0ZRN82ABwfQjcAHCNjjLxuS4tmF6u+PKQ123u0u5dha0A2oK97+oU9UVUHZivoCdG3DQDHgdANAMdh4k1nwOfWaQ2l6ugb1pod3epJjjpcGVDY2noGVRKOye8KaGgs6XQ5OS3oDqk6MFthb1QT3YgEbgA4dvR0A8A0SNu2LGO0ozOpdTt7lBwZc7okoCDR133iilwBVQdnKeqNy7bTMoYBkgBwIljpBoBpMHG+d2VxkaqKi7StI6kNbb2Eb2CG7e/rjhC6j5HP5VdVYJbivlLZdlqSCNwAMA0I3QAwjSbCd01JQLUlAcI34IDxvu6Y02XkDK/lU2WgRiW+MkkT28gJ2wAwXQjdAJABLw/f2zuTWt/Wq+Qw4RvItPbJvu4iDY0NOl1O1nIbjyoDNUr4KyRN9GvTsw0A042ebgCYAWnblpEI38AM8LgsvW4Rfd2H47V8Ki+qUqm/XEaG4WgAkGGsdAPADJhY+a6OB1QTZ+UbyKTRsbRSafq6X87vKlJFUbXivoQkJpEDwEwhdAPADHp5+N7RmdTG9j71DaUcrgzIL33JlCKc1y1p/OiviqIaxXwT08gJ2wAwkwjdAOCAifBdFQ+opiSo3b1D2tTep719ww5XBuSH9t5BxQu8rzviiakiUK2w58BzthmQBgAzjdANAA6aCN+lYZ/KIn71Do5qY3ufdnYlxcQN4Pht60iquSqqsCdacKG72FuiikCNAu7gAUd/sboNAE5hkBoAZBHbtmWM0dDomDbv7tNLeweUGuNlGjgeFy6uVF+qS5v7XnS6lIyzZCnuS6giUC2fyz/5WgIAcB4r3QCQRSbeJPvclpqromqqjOilPQPavKdfg5z1DRyTvsGUIoH87uv2Wj6VFVWq1Fcmy7gmLydwA0D2oLEHALKQMePH+LgsS3VlIZ03v0In18UVDXicLg3IGe09g3JbHvldRU6XMu3CnqgaIs1aUHyyyvyVclnuydcNZKcbb7xRS5YscboMAA4gdANAlrP2vZGuKC7SWc3lOqu5TDXxwGQ/OIBD29aRlG3bCnvyY7XbMi4l/BWaX3ySmqLzFfEUF3zQbmtr0wc/+EHV19fL5/OptrZWb3rTm/SHP/zB6dIAYBLbywEgR0yE7EiRR4tnF2tBbUxb9w7opb0DGhjmyDHg5UZS4+d1h3L8vG6fq0hl/gqV+stkDlgvKeSwLUlbtmzRGWecoVgspq9+9atauHChRkdH9eCDD+raa6/VCy+84HSJACCJlW4AyDkTK1tu1/jW83PnV+hVjaWqjBWpwN+DAwfpG0wpkpMr3UZRb1yNkVYtKD5JCX+FLOMq+JXtA11zzTUyxujJJ5/U2972NjU1NWn+/Pn6yEc+or/+9a+SpK1bt+riiy9WKBRSJBLRpZdeqvb29snHmNjyfdddd2nWrFkKhUK65pprNDY2pltvvVUVFRUqKyvTTTfdNOW5u7u7dfXVVyuRSCgSiei8887TypUrp9zmlltuUXl5ucLhsK666ioNDQ1NXvfHP/5RHo9HbW1TPwz6l3/5F5111lnT/UcFwGGEbgDIYROr3/GQT6fUl+iChVVqqY4q6GMjEyDlXl+33xVQTbBOi+NL1RBpntwaT9CeqrOzUw888ICuvfZaBYPBg66PxWJKp9O6+OKL1dnZqUcffVQPP/ywNm3apMsuu2zKbTdu3Kj7779fDzzwgH7605/qBz/4gS666CJt375djz76qL7yla/oM5/5jJ544onJ+1xyySXavXu37r//fj3zzDM6+eST9drXvladnZ2SpP/6r//SjTfeqC9/+ct6+umnVVlZqe9+97uT9z/77LNVX1+vH//4x5OXjY6O6ic/+YmuvPLK6f7jAuAwjgwDgDyTtm1Zxqijf1hb9/RrV/eQ0rzUo0B53ZYuWFiprQObtHeo/ch3cIDLuBX3larUX77vbG2O+zqSJ598Uqeffrruu+8+vfWtbz3kbR5++GG94Q1v0ObNm1VbWytJWrNmjebPn68nn3xSp556qm688UZ99atfVVtbm8LhsCTp9a9/vdatW6eNGzfKssbXp5qbm3X55ZfrE5/4hP785z/roosu0u7du+Xz+Safr6GhQddff73e97736dWvfrVOOukkfec735m8/lWvepWGhoa0YsUKSdKtt96qu+++W2vWrJEk3XfffXrve9+rtra2Q36QACB3sdINAHlmYvW7OOjVSXNKdOHiSi2eXazSsO8I9wTyz0RfdzYOU4t4YpoTbtLi+FLVBueoyBWQxKr20TiaNaO1a9eqtrZ2MnBLUmtrq2KxmNauXTt5WV1d3WTglqTy8nK1trZOBu6Jy3bv3i1JWrlypfr7+1VSUqJQKDT5a/Pmzdq4cePkc59++ulT6lm2bNmUry+//HJt2LBhciv83XffrUsvvZTADeQh9h8CQJ6aCN8uy1J1PKDakqCGR8e0ozOp7Z1J9Q6OOlwhMDOy6bxun+VXib9Mpf4yeSyvbDstY1gDOVaNjY0yxkzLsDSPZ+pRjMaYQ16WTqclSf39/aqsrNQjjzxy0GPFYrGjft6ysjK96U1v0vLlyzVnzhzdf//9h3xMALmP0A0ABWAigPs8LtWVhVRfHlb/0Ki2dyS1oyupwZExhysEMqe9Z1DxUEw+V5GGxwZn/Pk9llfF3hLFfaUKesJTto8TuI9PPB7XhRdeqO985zv60Ic+dNDqcHd3t1paWrRt2zZt27Ztyvby7u5utba2Hvdzn3zyyWpra5Pb7VZdXd0hb9PS0qInnnhC73nPeyYvm1jRPtDVV1+td7zjHaqpqdHcuXN1xhlnHHddALIXr/QAUGAmAnjQ59a8qoheu6BSr25KaFZpUB4X21qRf/af1x2Zsef0WF6V+Ss1L7pQi+JLVROsU8AdksT28enyne98R2NjYzrttNP0i1/8QuvXr9fatWv1zW9+U8uWLdP555+vhQsX6l3vepeeffZZPfnkk3rPe96jc845R0uXLj3u5z3//PO1bNkyveUtb9FDDz2kLVu26PHHH9enP/1pPf3005KkD3/4w7rrrru0fPlyvfjii/rc5z6n559//qDHuvDCCxWJRPSlL31JV1xxxXHXBCC7EboBoEAdePRQcdCrhbUxXbCoSqfNLdGskqC8bn5EID/MVF+3x/Iq4a+YErSDBwRtwvb0qq+v17PPPqtzzz1XH/3oR7VgwQJdcMEF+sMf/qDbb79dxhj96le/UnFxsc4++2ydf/75qq+v17333ntCz2uM0e9+9zudffbZuuKKK9TU1KS3v/3teumll1ReXi5Juuyyy/TZz35W119/vU455RS99NJL+sAHPnDQY1mWpcsvv1xjY2NTVsUB5BemlwMApjjwx0J3ckS7ugbV1j2oJFvQkcPOaEooHLC0svOpaX1cj+VRbN/W8ZAnMvnvh4CNo3XVVVdpz549+vWvf+10KQAyhJ5uAMAUB4aFWMCrWMCr1pqY+gZHtat7PIAzhA25pr1nUMXT1NftdxUp6i1WzBtX0B2ech1hG0erp6dHq1ev1j333EPgBvIcoRsAcFgHBoiQ362GirCaKiMaHBnTru6k2roH1dU/IrZMIdtt7UhqXlVUYU/kmEO3kaWwJ7ovaBfL6/Kxoo0TdvHFF+vJJ5/U+9//fl1wwQVOlwMgg9heDgA4LmnblmWMRsfS2ts7pD29w9rTN8QkdGStCxdXqi/Vqc196494W6/lU9RbrKi3WGFPVJaxON4LAHBcWOkGAByXiSnoHpel8liRKmJFMsYoOZzS7p4h7ekbUkffsFJpPttFdugfTCkciB3yOiOjoCesqKdYMV9cflfRQavZBG4AwPEgdAMATph1wBbbgM+tWYmg6spCsm1bXQMj2rNvJbwnyVZ0OKe9d6Kv26/hsSEF3CGFPVFFPFGFPJGDVrPZOg4AmA5sLwcAZJRt27I1HsxTY2nt6R1SZ/+IOgeG1ZscJYRjRhhJpWG/Tmso0dDYoLwun1zGRW82ACDjCN0AgBmVtm0ZjYecsbSt7oERdfYPq3NgRF0Dw0qN8WMJJ84yUjTgVTzkU2nYp3jIK5dlKW2nZcSZ2QCAmUPoBgA46sCVcNu2NTCcUkffvhDeP8z54DgqQZ9bsaBXsYBHxUGfIkUeWZaZ8iEPAABOIHQDALLOxGR0SRpOjamzf0S9yRH1DI6qNzmqoVGCeCHze1yTAXv8v165XeN92Om0LcsiYAMAsgehGwCQ9Q5cDZek0VRaPftCeE9yRL2Do+ofSjlbJDKiyOtS2O9RdF/ALg565XW7JI0HbGNYxQYAZDdCNwAgJ9m2LdvW5KrmWNpW374Q3jM4qr7BUQ0MpzSSSjtcKY7GRLgO+d0KF3kUKfIo5PfIte//L9vEAQC5itANAMgrL1/9TI2lNTCcmgzh/cMpDQylNDCc0hhniM8oo/FwHfR7FJ4Srt1yWePbw1/+YQoAALmO0A0AKAjpfT/uDjxTfHh0TP1DKfUPjap/OKXBkTENjYxpaDSloVFWyI+VkeT3ulTkdSngdSvgc4+HbJ9bAa9bPo81+WEI4RoAUCgI3QCAgjYR/l7eG2zbtkZSaQ2OjCk5ktoXxsc0ODo2+fuh0TEVyk9Rj8vI53HJ67bkc+/7r8clv2dfqPa55PO4pnyocagPOgAAKDSEbgAAjuBwwVwa374+uu/XyGhaI2NpjaT2XZaa+vuJ242lbY2l94fSmWAkuV1GLsva918j98t+73Ebed0u+Q4I1F63JY/bOig4T/yZSKxWAwDwSgjdAABMowPDqMyRV3nTti3btpXeF8LH0vb+/6b3fy2Z8dCv8eA/8bDj/zX7Lt/3a99t3ZYllzUeqo8UjCcmxMs+uroBAMDRIXQDAAAAAJAhltMFAMDxuvHGG7VkyZK8eR4AAADkH0I3gIwa3wZ7+F833nij0yUCAAAAGeN2ugAA+W3Xrl2Tv7/33nt1ww03aN26dZOXhUIhJ8oCAAAAZgQr3QAyqqKiYvJXNBqVMWbKZT/72c/U0tIiv9+v5uZmffe7351y/+3bt+sd73iH4vG4gsGgli5dqieeeGLKbX784x+rrq5O0WhUb3/729XX1zd53Wte8xp96EMf0vXXX694PK6KioqDVte3bt2qiy++WKFQSJFIRJdeeqna29sP+z2l02l94QtfUE1NjXw+n5YsWaIHHnhgym0ef/xxLVmyRH6/X0uXLtUvf/lLGWO0YsUK2bathoYG3XbbbVPus2LFChljtGHDhmP5IwYAAEAWI3QDcMxPfvIT3XDDDbrpppu0du1affnLX9ZnP/tZ/fCHP5Qk9ff365xzztGOHTv061//WitXrtT111+vdDo9+RgbN27UL3/5S/32t7/Vb3/7Wz366KO65ZZbpjzPD3/4QwWDQT3xxBO69dZb9YUvfEEPP/ywpPEAffHFF6uzs1OPPvqoHn74YW3atEmXXXbZYev+93//d33ta1/TbbfdplWrVunCCy/Um9/8Zq1fv16S1Nvbqze96U1auHChnn32WX3xi1/Uxz/+8cn7G2N05ZVXavny5VMed/ny5Tr77LPV0NBwYn+wAAAAyB42AMyQ5cuX29FodPLruXPn2vfcc8+U23zxi1+0ly1bZtu2bX/ve9+zw+Gw3dHRccjH+9znPmcHAgG7t7d38rKPfexj9umnnz759TnnnGOfeeaZU+536qmn2h//+Mdt27bthx56yHa5XPbWrVsnr3/++edtSfaTTz45+TyLFy+evL6qqsq+6aabDnrMa665xrZt27799tvtkpISe3BwcPL6O++805Zk/+1vf7Nt27Z37Nhhu1wu+4knnrBt27ZHRkbs0tJS++677z7k9woAAIDcxEo3AEcMDAxo48aNuuqqqxQKhSZ/felLX9LGjRsljW+3PumkkxSPxw/7OHV1dQqHw5NfV1ZWavfu3VNus2jRoilfH3ibtWvXqra2VrW1tZPXt7a2KhaLae3atQc9X29vr3bu3KkzzjhjyuVnnHHG5O3XrVunRYsWye/3T15/2mmnTbl9VVWVLrroIt11112SpN/85jcaHh7WJZdcctjvFQAAALmHQWoAHNHf3y9JuvPOO3X66adPuc7lckmSioqKjvg4Ho9nytfGmCnbz4/2Nk64+uqr9Q//8A/6xje+oeXLl+uyyy5TIBBwuiwAAABMI1a6ATiivLxcVVVV2rRpkxoaGqb8mjNnjqTxFeoVK1aos7MzY3W0tLRo27Zt2rZt2+Rla9asUXd3t1pbWw+6fSQSUVVVlR577LEplz/22GOTt583b55Wr16t4eHhyeufeuqpgx7rjW98o4LBoG6//XY98MADuvLKK6fr2wIAAECWIHQDcMznP/953XzzzfrmN7+pF198UatXr9by5cv19a9/XZL0jne8QxUVFXrLW96ixx57TJs2bdIvfvEL/eUvf5m2Gs4//3wtXLhQ73rXu/Tss8/qySef1Hve8x6dc845Wrp06SHv87GPfUxf+cpXdO+992rdunX6xCc+oRUrVujDH/6wJOmd73yn0um03ve+92nt2rV68MEHJyeVG2MmH8flcunyyy/XJz/5STU2NmrZsmXT9n0BAAAgOxC6ATjm6quv1ve//30tX75cCxcu1DnnnKO77757cqXb6/XqoYceUllZmd74xjdq4cKFuuWWWya3n08HY4x+9atfqbi4WGeffbbOP/981dfX69577z3sfT70oQ/pIx/5iD760Y9q4cKFeuCBB/TrX/9ajY2NksZXw3/zm99oxYoVWrJkiT796U/rhhtukKQpfd6SdNVVV2lkZERXXHHFtH1PAAAAyB7Gtm3b6SIAIN/95Cc/0RVXXKGenp4pvep/+tOf9NrXvlbbtm1TeXm5gxUCAAAgExikBgAZ8KMf/Uj19fWqrq7WypUr9fGPf1yXXnrpZOAeHh7Wnj17dOONN+qSSy4hcAMAAOQptpcDQAa0tbXp3e9+t1paWnTdddfpkksu0X/8x39MXv/Tn/5Us2fPVnd3t2699VYHKwUAAEAmsb0cAAAAAIAMYaUbAAAAAIAMIXQDAAAAAJAhhG4AAAAAADKE0A0AAAAAQIYQugEAAAAAyBBCNwAAAAAAGULoBgAAAAAgQwjdAAAAAABkCKEbAAAAAIAMIXQDAAAAAJAhhG4AAAAAADKE0A0AAAAAQIYQugEAAAAAyBBCNwAAAAAAGULoBgAAAAAgQwjdAAAAAABkCKEbAAAAAIAMIXQDAAAAAJAhhG4AAAAAADKE0A0AAAAAQIYQugEAAAAAyBBCNwAAAAAAGULoBgAAAAAgQwjdAAAAAABkCKEbAAAAAIAMIXQDAAAAAJAhhG4AAAAAADLk/wOn0hyWHOhxeAAAAABJRU5ErkJggg==\n" }, "metadata": {} } ] } ] }