Spaces:
Runtime error
Runtime error
| # Ultralytics YOLO ๐, AGPL-3.0 license | |
| """ | |
| YOLO-NAS model interface. | |
| Usage - Predict: | |
| from ultralytics import NAS | |
| model = NAS('yolo_nas_s') | |
| results = model.predict('ultralytics/assets/bus.jpg') | |
| """ | |
| from pathlib import Path | |
| import torch | |
| from ultralytics.yolo.cfg import get_cfg | |
| from ultralytics.yolo.engine.exporter import Exporter | |
| from ultralytics.yolo.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, ROOT, is_git_dir | |
| from ultralytics.yolo.utils.checks import check_imgsz | |
| from ...yolo.utils.torch_utils import model_info, smart_inference_mode | |
| from .predict import NASPredictor | |
| from .val import NASValidator | |
| class NAS: | |
| def __init__(self, model='yolo_nas_s.pt') -> None: | |
| # Load or create new NAS model | |
| import super_gradients | |
| self.predictor = None | |
| suffix = Path(model).suffix | |
| if suffix == '.pt': | |
| self._load(model) | |
| elif suffix == '': | |
| self.model = super_gradients.training.models.get(model, pretrained_weights='coco') | |
| self.task = 'detect' | |
| self.model.args = DEFAULT_CFG_DICT # attach args to model | |
| # Standardize model | |
| self.model.fuse = lambda verbose=True: self.model | |
| self.model.stride = torch.tensor([32]) | |
| self.model.names = dict(enumerate(self.model._class_names)) | |
| self.model.is_fused = lambda: False # for info() | |
| self.model.yaml = {} # for info() | |
| self.model.pt_path = model # for export() | |
| self.model.task = 'detect' # for export() | |
| self.info() | |
| def _load(self, weights: str): | |
| self.model = torch.load(weights) | |
| def predict(self, source=None, stream=False, **kwargs): | |
| """ | |
| Perform prediction using the YOLO model. | |
| Args: | |
| source (str | int | PIL | np.ndarray): The source of the image to make predictions on. | |
| Accepts all source types accepted by the YOLO model. | |
| stream (bool): Whether to stream the predictions or not. Defaults to False. | |
| **kwargs : Additional keyword arguments passed to the predictor. | |
| Check the 'configuration' section in the documentation for all available options. | |
| Returns: | |
| (List[ultralytics.yolo.engine.results.Results]): The prediction results. | |
| """ | |
| if source is None: | |
| source = ROOT / 'assets' if is_git_dir() else 'https://ultralytics.com/images/bus.jpg' | |
| LOGGER.warning(f"WARNING โ ๏ธ 'source' is missing. Using 'source={source}'.") | |
| overrides = dict(conf=0.25, task='detect', mode='predict') | |
| overrides.update(kwargs) # prefer kwargs | |
| if not self.predictor: | |
| self.predictor = NASPredictor(overrides=overrides) | |
| self.predictor.setup_model(model=self.model) | |
| else: # only update args if predictor is already setup | |
| self.predictor.args = get_cfg(self.predictor.args, overrides) | |
| return self.predictor(source, stream=stream) | |
| def train(self, **kwargs): | |
| """Function trains models but raises an error as NAS models do not support training.""" | |
| raise NotImplementedError("NAS models don't support training") | |
| def val(self, **kwargs): | |
| """Run validation given dataset.""" | |
| overrides = dict(task='detect', mode='val') | |
| overrides.update(kwargs) # prefer kwargs | |
| args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
| args.imgsz = check_imgsz(args.imgsz, max_dim=1) | |
| validator = NASValidator(args=args) | |
| validator(model=self.model) | |
| self.metrics = validator.metrics | |
| return validator.metrics | |
| def export(self, **kwargs): | |
| """ | |
| Export model. | |
| Args: | |
| **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
| """ | |
| overrides = dict(task='detect') | |
| overrides.update(kwargs) | |
| overrides['mode'] = 'export' | |
| args = get_cfg(cfg=DEFAULT_CFG, overrides=overrides) | |
| args.task = self.task | |
| if args.imgsz == DEFAULT_CFG.imgsz: | |
| args.imgsz = self.model.args['imgsz'] # use trained imgsz unless custom value is passed | |
| if args.batch == DEFAULT_CFG.batch: | |
| args.batch = 1 # default to 1 if not modified | |
| return Exporter(overrides=args)(model=self.model) | |
| def info(self, detailed=False, verbose=True): | |
| """ | |
| Logs model info. | |
| Args: | |
| detailed (bool): Show detailed information about model. | |
| verbose (bool): Controls verbosity. | |
| """ | |
| return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640) | |
| def __call__(self, source=None, stream=False, **kwargs): | |
| """Calls the 'predict' function with given arguments to perform object detection.""" | |
| return self.predict(source, stream, **kwargs) | |
| def __getattr__(self, attr): | |
| """Raises error if object has no requested attribute.""" | |
| name = self.__class__.__name__ | |
| raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}") | |