Spaces:
Runtime error
Runtime error
File size: 8,393 Bytes
03b3c9a 7c68366 ceb558e 7c68366 ceb558e 03b3c9a 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 03b3c9a 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 03b3c9a 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 03b3c9a 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 03b3c9a 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 ceb558e 7c68366 03b3c9a 7c68366 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
import os
import gradio as gr
from huggingface_hub import login
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, DataCollatorForLanguageModeling, pipeline
from peft import get_peft_model, LoraConfig, TaskType, PeftModel
import json
BASE_MODEL = "bigcode/santacoder"
LORA_PATH = "./lora_output"
DATASET_FILE = "codesearchnet_lora_dataset.json"
MAX_TOKEN_LENGTH = 256
NUM_SAMPLES_TO_PROCESS = 1000
DEFAULT_EPOCHS = 10
tokenizer = None
lora_model = None
tokenized_dataset = None
lora_generator = None
def prepare_codesearchnet():
if os.path.exists(DATASET_FILE):
print(f"Dataset '{DATASET_FILE}' ya existe.")
return
print(f"Descargando y procesando CodeSearchNet ({NUM_SAMPLES_TO_PROCESS} muestras)...")
try:
raw_csn = load_dataset('Nan-Do/code-search-net-python', split=f'train[:{NUM_SAMPLES_TO_PROCESS}]')
def format_for_lora(example):
prompt_text = (
f"# Descripción: {example['docstring_summary']}\n"
f"# Completa la siguiente función:\n"
f"def {example['func_name']}("
)
completion_text = example['code']
return {"prompt": prompt_text, "completion": completion_text}
lora_dataset = raw_csn.map(
format_for_lora,
batched=False,
remove_columns=raw_csn["train"].column_names,
)
lora_dataset.to_json(DATASET_FILE)
print(f"Pre-procesamiento completado. {NUM_SAMPLES_TO_PROCESS} ejemplos guardados en '{DATASET_FILE}'.")
except Exception as e:
print(f"Error CRÍTICO al descargar/procesar CodeSearchNet. Error: {e}")
minimal_dataset = [{"prompt": "# Error de carga. Intenta de nuevo.", "completion": "pass\n"}] * 10
with open(DATASET_FILE, 'w') as f:
json.dump(minimal_dataset, f)
def setup_resources():
global tokenizer, lora_model, tokenized_dataset
prepare_codesearchnet()
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
print("\nCargando modelo base y tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL)
base_model = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map="auto")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=32,
lora_dropout=0.1,
target_modules=["c_proj", "c_attn"],
)
lora_model = get_peft_model(base_model, peft_config)
print(f"Modelo LoRA preparado. Parámetros entrenables listos.")
print(f"Cargando y tokenizando dataset: {DATASET_FILE}...")
try:
raw_dataset = load_dataset("json", data_files=DATASET_FILE)
def tokenize_function(examples):
return tokenizer(
examples["prompt"] + examples["completion"],
truncation=True,
padding="max_length",
max_length=MAX_TOKEN_LENGTH
)
tokenized_dataset = raw_dataset.map(
tokenize_function,
batched=True,
remove_columns=raw_dataset["train"].column_names if "train" in raw_dataset else [],
)
print("Dataset tokenizado correctamente.")
except Exception as e:
tokenized_dataset = None
print(f"Error al cargar o tokenizar el dataset. {e}")
def train_lora(epochs, batch_size, learning_rate):
global lora_model, tokenized_dataset, lora_generator
if tokenized_dataset is None or "train" not in tokenized_dataset:
return f"Error: El dataset no pudo cargarse o está vacío. No se puede entrenar."
try:
lora_generator = None
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
training_args = TrainingArguments(
output_dir=LORA_PATH,
per_device_train_batch_size=int(batch_size),
num_train_epochs=float(epochs),
learning_rate=float(learning_rate),
save_total_limit=1,
logging_steps=10,
push_to_hub=False,
)
trainer = Trainer(
model=lora_model,
args=training_args,
train_dataset=tokenized_dataset["train"],
data_collator=data_collator,
)
trainer.train()
lora_model.save_pretrained(LORA_PATH)
tokenizer.save_pretrained(LORA_PATH)
return f"Entrenamiento completado. Adaptadores LoRA guardados en **{LORA_PATH}**"
except Exception as e:
return f"Error durante el entrenamiento: {e}"
def generate_text(prompt_text):
global lora_generator
try:
if lora_generator is None:
base_model_gen = AutoModelForCausalLM.from_pretrained(BASE_MODEL, device_map="auto")
if os.path.exists(LORA_PATH):
print("Cargando adaptadores LoRA...")
model_with_lora = PeftModel.from_pretrained(base_model_gen, LORA_PATH)
final_model = model_with_lora.merge_and_unload()
else:
print("No se encontraron adaptadores LoRA. Usando modelo base.")
final_model = base_model_gen
final_model.eval()
lora_generator = pipeline("text-generation", model=final_model, tokenizer=tokenizer)
print("Modelo de inferencia listo.")
prompt_with_indent = prompt_text.strip() + "\n "
output = lora_generator(
prompt_with_indent,
max_new_tokens=150,
temperature=0.7,
top_p=0.9,
clean_up_tokenization_spaces=True
)
full_output = output[0]["generated_text"]
start_index = full_output.find(prompt_with_indent)
if start_index != -1:
completion = full_output[start_index + len(prompt_with_indent):]
else:
completion = full_output
return completion
except Exception as e:
return f"Error generando texto (Asegúrate de que el modelo base/LoRA esté cargado): {e}"
with gr.Blocks(title="AmorCoderAI - LoRA") as demo:
gr.Markdown("# 💙 AmorCoderAI - Entrenamiento y Pruebas LoRA")
gr.Markdown(f"Modelo base: `{BASE_MODEL}`. Usando **{NUM_SAMPLES_TO_PROCESS}** ejemplos de CodeSearchNet (10 Épocas).")
with gr.Tab("🧠 Entrenar (Manual)"):
gr.Markdown(f"--- ¡CUIDADO! El auto-entrenamiento usará {DEFAULT_EPOCHS} épocas para aprender la sintaxis. ---")
epochs = gr.Number(value=DEFAULT_EPOCHS, label="Épocas", precision=0)
batch_size = gr.Number(value=2, label="Tamaño de lote (ajusta según tu VRAM)", precision=0)
learning_rate = gr.Number(value=5e-5, label="Tasa de aprendizaje")
train_button = gr.Button("🚀 Iniciar Entrenamiento Manual")
train_output = gr.Textbox(label="Resultado del Entrenamiento Manual")
train_button.click(
train_lora,
inputs=[epochs, batch_size, learning_rate],
outputs=train_output
)
with gr.Tab("✨ Probar modelo"):
prompt = gr.Textbox(
label="Escribe código (ej: # Descripción: Calcula el factorial de N. \n# Completa la siguiente función:\ndef factorial(n):)",
lines=4
)
generate_button = gr.Button("💬 Generar código")
output_box = gr.Textbox(label="Salida generada (SOLO CÓDIGO)", lines=10)
generate_button.click(generate_text, inputs=prompt, outputs=output_box)
if __name__ == "__main__":
setup_resources()
print("\n=============================================")
print(f"🤖 INICIANDO AUTO-ENTRENAMIENTO ({DEFAULT_EPOCHS} Épocas, 2 Batch Size) usando {NUM_SAMPLES_TO_PROCESS} ejemplos")
print("=============================================")
auto_train_result = train_lora(epochs=DEFAULT_EPOCHS, batch_size=2, learning_rate=5e-5)
print(f"\nFIN DEL AUTO-ENTRENAMIENTO: {auto_train_result}")
print("\n=============================================")
print("💻 LANZANDO INTERFAZ GRADIO")
print("=============================================")
demo.launch()
|