AndyPhucter's picture
Update app.py
4510cc9 verified
import gradio as gr
from datasets import load_dataset
from diffusers import StableDiffusionPipeline
# Load the dataset
ds = load_dataset("BleachNick/UltraEdit_500k")
# Load the model
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0")
def generate_image(prompt, similarity, steps):
# Adjust the parameters based on the inputs
pipe.scheduler.set_timesteps(steps)
guidance_scale = 7.5 * similarity
# Generate the image
result = pipe(prompt, guidance_scale=guidance_scale)
return result.images[0]
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Image Generation with Adjustable Parameters")
with gr.Row():
prompt = gr.Textbox(label="Prompt")
similarity = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label="Similarity to Original Image")
steps = gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Number of Steps")
with gr.Row():
generate_button = gr.Button("Generate Image")
output_image = gr.Image(label="Generated Image")
generate_button.click(fn=generate_image, inputs=[prompt, similarity, steps], outputs=output_image)
demo.launch()