Spaces:
Build error
Build error
Anirudh Bhalekar
commited on
Commit
·
1316be2
1
Parent(s):
f129f93
reqs added
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/inference.cpython-311.pyc +0 -0
- __pycache__/models_Facies.cpython-311.pyc +0 -0
- __pycache__/models_Fault.cpython-311.pyc +0 -0
- app.py +6 -1
- requirements.txt +0 -0
- util/__pycache__/datasets.cpython-311.pyc +0 -0
- util/__pycache__/variable_pos_embed.cpython-311.pyc +0 -0
- util/skeletonize.py +0 -486
- util/tools.py +0 -143
__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (891 Bytes). View file
|
|
|
__pycache__/inference.cpython-311.pyc
ADDED
|
Binary file (4.02 kB). View file
|
|
|
__pycache__/models_Facies.cpython-311.pyc
ADDED
|
Binary file (22.1 kB). View file
|
|
|
__pycache__/models_Fault.cpython-311.pyc
ADDED
|
Binary file (15.7 kB). View file
|
|
|
app.py
CHANGED
|
@@ -4,5 +4,10 @@ import numpy as np
|
|
| 4 |
import requests
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import requests
|
| 5 |
from PIL import Image
|
| 6 |
import torch
|
| 7 |
+
from inference import predict, random_sample
|
| 8 |
|
| 9 |
+
|
| 10 |
+
def main():
|
| 11 |
+
gr.Interface(fn=predict,
|
| 12 |
+
inputs=gr.Image(type="pil"),
|
| 13 |
+
outputs=gr.Image(type="pil"),).launch()
|
requirements.txt
ADDED
|
Binary file (9.65 kB). View file
|
|
|
util/__pycache__/datasets.cpython-311.pyc
CHANGED
|
Binary files a/util/__pycache__/datasets.cpython-311.pyc and b/util/__pycache__/datasets.cpython-311.pyc differ
|
|
|
util/__pycache__/variable_pos_embed.cpython-311.pyc
ADDED
|
Binary file (5.7 kB). View file
|
|
|
util/skeletonize.py
DELETED
|
@@ -1,486 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
Courtesy of Martin Mentan:
|
| 3 |
-
|
| 4 |
-
Works Cited
|
| 5 |
-
Menten, Martin J., et al. ‘A Skeletonization Algorithm for Gradient-Based Optimization’.
|
| 6 |
-
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
|
| 7 |
-
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
-
import torch
|
| 11 |
-
import torch.nn as nn
|
| 12 |
-
import torch.nn.functional as F
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
class Skeletonize(torch.nn.Module):
|
| 16 |
-
"""
|
| 17 |
-
Class based on PyTorch's Module class to skeletonize two- or three-dimensional input images
|
| 18 |
-
while being fully compatible with PyTorch's autograd automatic differention engine as proposed in [1].
|
| 19 |
-
|
| 20 |
-
Attributes:
|
| 21 |
-
propabilistic: a Boolean that indicates whether the input image should be binarized using
|
| 22 |
-
the reparametrization trick and straight-through estimator.
|
| 23 |
-
It should always be set to True if non-binary inputs are being provided.
|
| 24 |
-
beta: scale of added logistic noise during the reparametrization trick. If too small, there will not be any learning via
|
| 25 |
-
gradient-based optimization; if too large, the learning is very slow.
|
| 26 |
-
tau: Boltzmann temperature for reparametrization trick.
|
| 27 |
-
simple_point_detection: decides whether simple points should be identified using Boolean characterization of their 26-neighborhood (Boolean) [2]
|
| 28 |
-
or by checking whether the Euler characteristic changes under their deletion (EulerCharacteristic) [3].
|
| 29 |
-
num_iter: number of iterations that each include one end-point check, eight checks for simple points and eight subsequent deletions.
|
| 30 |
-
The number of iterations should be tuned to the type of input image.
|
| 31 |
-
|
| 32 |
-
[1] Martin J. Menten et al. A skeletonization algorithm for gradient-based optimization.
|
| 33 |
-
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.
|
| 34 |
-
[2] Gilles Bertrand. A boolean characterization of three- dimensional simple points.
|
| 35 |
-
Pattern recognition letters, 17(2):115-124, 1996.
|
| 36 |
-
[3] Steven Lobregt et al. Three-dimensional skeletonization:principle and algorithm.
|
| 37 |
-
IEEE Transactions on pattern analysis and machine intelligence, 2(1):75-77, 1980.
|
| 38 |
-
"""
|
| 39 |
-
|
| 40 |
-
def __init__(self, probabilistic=True, beta=0.33, tau=1.0, simple_point_detection='Boolean', num_iter=5):
|
| 41 |
-
|
| 42 |
-
super(Skeletonize, self).__init__()
|
| 43 |
-
|
| 44 |
-
self.probabilistic = probabilistic
|
| 45 |
-
self.tau = tau
|
| 46 |
-
self.beta = beta
|
| 47 |
-
|
| 48 |
-
self.num_iter = num_iter
|
| 49 |
-
self.endpoint_check = self._single_neighbor_check
|
| 50 |
-
if simple_point_detection == 'Boolean':
|
| 51 |
-
self.simple_check = self._boolean_simple_check
|
| 52 |
-
elif simple_point_detection == 'EulerCharacteristic':
|
| 53 |
-
self.simple_check = self._euler_characteristic_simple_check
|
| 54 |
-
else:
|
| 55 |
-
raise Exception()
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
def forward(self, img):
|
| 59 |
-
|
| 60 |
-
img = self._prepare_input(img)
|
| 61 |
-
|
| 62 |
-
if self.probabilistic:
|
| 63 |
-
img = self._stochastic_discretization(img)
|
| 64 |
-
|
| 65 |
-
for current_iter in range(self.num_iter):
|
| 66 |
-
|
| 67 |
-
# At each iteration create a new map of the end-points
|
| 68 |
-
is_endpoint = self.endpoint_check(img)
|
| 69 |
-
|
| 70 |
-
# Sub-iterate through eight different subfields
|
| 71 |
-
x_offsets = [0, 1, 0, 1, 0, 1, 0, 1]
|
| 72 |
-
y_offsets = [0, 0, 1, 1, 0, 0, 1, 1]
|
| 73 |
-
z_offsets = [0, 0, 0, 0, 1, 1, 1, 1]
|
| 74 |
-
|
| 75 |
-
for x_offset, y_offset, z_offset in zip(x_offsets, y_offsets, z_offsets):
|
| 76 |
-
|
| 77 |
-
# At each sub-iteration detect all simple points and delete all simple points that are not end-points
|
| 78 |
-
is_simple = self.simple_check(img[:, :, x_offset:, y_offset:, z_offset:])
|
| 79 |
-
deletion_candidates = is_simple * (1 - is_endpoint[:, :, x_offset::2, y_offset::2, z_offset::2])
|
| 80 |
-
img[:, :, x_offset::2, y_offset::2, z_offset::2] = torch.min(img[:, :, x_offset::2, y_offset::2, z_offset::2].clone(), 1 - deletion_candidates)
|
| 81 |
-
|
| 82 |
-
img = self._prepare_output(img)
|
| 83 |
-
|
| 84 |
-
return img
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
def _prepare_input(self, img):
|
| 89 |
-
"""
|
| 90 |
-
Function to check that the input image is compatible with the subsequent calculations.
|
| 91 |
-
Only two- and three-dimensional images with values between 0 and 1 are supported.
|
| 92 |
-
If the input image is two-dimensional then it is converted into a three-dimensional one for further processing.
|
| 93 |
-
"""
|
| 94 |
-
|
| 95 |
-
if img.dim() == 5:
|
| 96 |
-
self.expanded_dims = False
|
| 97 |
-
elif img.dim() == 4:
|
| 98 |
-
self.expanded_dims = True
|
| 99 |
-
img = img.unsqueeze(2)
|
| 100 |
-
else:
|
| 101 |
-
raise Exception("Only two-or three-dimensional images (tensor dimensionality of 4 or 5) are supported as input.")
|
| 102 |
-
|
| 103 |
-
if img.shape[2] == 2 or img.shape[3] == 2 or img.shape[4] == 2 or img.shape[3] == 1 or img.shape[4] == 1:
|
| 104 |
-
raise Exception()
|
| 105 |
-
|
| 106 |
-
if img.min() < 0.0 or img.max() > 1.0:
|
| 107 |
-
raise Exception("Image values must lie between 0 and 1.")
|
| 108 |
-
|
| 109 |
-
img = F.pad(img, (1, 1, 1, 1, 1, 1), value=0)
|
| 110 |
-
|
| 111 |
-
return img
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def _stochastic_discretization(self, img):
|
| 115 |
-
"""
|
| 116 |
-
Function to binarize the image so that it can be processed by our skeletonization method.
|
| 117 |
-
In order to remain compatible with backpropagation we utilize the reparameterization trick and a straight-through estimator.
|
| 118 |
-
"""
|
| 119 |
-
|
| 120 |
-
alpha = (img + 1e-8) / (1.0 - img + 1e-8)
|
| 121 |
-
|
| 122 |
-
uniform_noise = torch.rand_like(img)
|
| 123 |
-
uniform_noise = torch.empty_like(img).uniform_(1e-8, 1 - 1e-8)
|
| 124 |
-
logistic_noise = (torch.log(uniform_noise) - torch.log(1 - uniform_noise))
|
| 125 |
-
|
| 126 |
-
img = torch.sigmoid((torch.log(alpha) + logistic_noise * self.beta) / self.tau)
|
| 127 |
-
img = (img.detach() > 0.5).float() - img.detach() + img
|
| 128 |
-
|
| 129 |
-
return img
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
def _single_neighbor_check(self, img):
|
| 133 |
-
"""
|
| 134 |
-
Function that characterizes points as endpoints if they have a single neighbor or no neighbor at all.
|
| 135 |
-
"""
|
| 136 |
-
|
| 137 |
-
img = F.pad(img, (1, 1, 1, 1, 1, 1))
|
| 138 |
-
|
| 139 |
-
# Check that number of ones in twentysix-neighborhood is exactly 0 or 1
|
| 140 |
-
K = torch.tensor([[[1.0, 1.0, 1.0],
|
| 141 |
-
[1.0, 1.0, 1.0],
|
| 142 |
-
[1.0, 1.0, 1.0]],
|
| 143 |
-
[[1.0, 1.0, 1.0],
|
| 144 |
-
[1.0, 0.0, 1.0],
|
| 145 |
-
[1.0, 1.0, 1.0]],
|
| 146 |
-
[[1.0, 1.0, 1.0],
|
| 147 |
-
[1.0, 1.0, 1.0],
|
| 148 |
-
[1.0, 1.0, 1.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 149 |
-
|
| 150 |
-
num_twentysix_neighbors = F.conv3d(img, K)
|
| 151 |
-
condition1 = F.hardtanh(-(num_twentysix_neighbors - 2), min_val=0, max_val=1) # 1 or fewer neigbors
|
| 152 |
-
|
| 153 |
-
return condition1
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def _boolean_simple_check(self, img):
|
| 157 |
-
"""
|
| 158 |
-
Function that identifies simple points using Boolean conditions introduced by Bertrand et al. [1].
|
| 159 |
-
Each Boolean conditions can be assessed via convolutions with a limited number of pre-defined kernels.
|
| 160 |
-
It total, four conditions are checked. If any one is fulfilled, the point is deemed simple.
|
| 161 |
-
|
| 162 |
-
[1] Gilles Bertrand. A boolean characterization of three- dimensional simple points.
|
| 163 |
-
Pattern recognition letters, 17(2):115-124, 1996.
|
| 164 |
-
"""
|
| 165 |
-
|
| 166 |
-
img = F.pad(img, (1, 1, 1, 1, 1, 1), value=0)
|
| 167 |
-
|
| 168 |
-
# Condition 1: number of zeros in the six-neighborhood is exactly 1
|
| 169 |
-
K_N6 = torch.tensor([[[0.0, 0.0, 0.0],
|
| 170 |
-
[0.0, 1.0, 0.0],
|
| 171 |
-
[0.0, 0.0, 0.0]],
|
| 172 |
-
[[0.0, 1.0, 0.0],
|
| 173 |
-
[1.0, 0.0, 1.0],
|
| 174 |
-
[0.0, 1.0, 0.0]],
|
| 175 |
-
[[0.0, 0.0, 0.0],
|
| 176 |
-
[0.0, 1.0, 0.0],
|
| 177 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 178 |
-
|
| 179 |
-
num_six_neighbors = F.conv3d(1 - img, K_N6, stride=2)
|
| 180 |
-
|
| 181 |
-
subcondition1a = F.hardtanh(num_six_neighbors, min_val=0, max_val=1) # 1 or more neighbors
|
| 182 |
-
subcondition1b = F.hardtanh(-(num_six_neighbors - 2), min_val=0, max_val=1) # 1 or fewer neighbors
|
| 183 |
-
|
| 184 |
-
condition1 = subcondition1a * subcondition1b
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
# Condition 2: number of ones in twentysix-neighborhood is exactly 1
|
| 188 |
-
K_N26 = torch.tensor([[[1.0, 1.0, 1.0],
|
| 189 |
-
[1.0, 1.0, 1.0],
|
| 190 |
-
[1.0, 1.0, 1.0]],
|
| 191 |
-
[[1.0, 1.0, 1.0],
|
| 192 |
-
[1.0, 0.0, 1.0],
|
| 193 |
-
[1.0, 1.0, 1.0]],
|
| 194 |
-
[[1.0, 1.0, 1.0],
|
| 195 |
-
[1.0, 1.0, 1.0],
|
| 196 |
-
[1.0, 1.0, 1.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 197 |
-
|
| 198 |
-
num_twentysix_neighbors = F.conv3d(img, K_N26, stride=2)
|
| 199 |
-
|
| 200 |
-
subcondition2a = F.hardtanh(num_twentysix_neighbors, min_val=0, max_val=1) # 1 or more neighbors
|
| 201 |
-
subcondition2b = F.hardtanh(-(num_twentysix_neighbors - 2), min_val=0, max_val=1) # 1 or fewer neigbors
|
| 202 |
-
|
| 203 |
-
condition2 = subcondition2a * subcondition2b
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
# Condition 3: Number of ones in eighteen-neigborhood exactly 1...
|
| 207 |
-
K_N18 = torch.tensor([[[0.0, 1.0, 0.0],
|
| 208 |
-
[1.0, 1.0, 1.0],
|
| 209 |
-
[0.0, 1.0, 0.0]],
|
| 210 |
-
[[1.0, 1.0, 1.0],
|
| 211 |
-
[1.0, 0.0, 1.0],
|
| 212 |
-
[1.0, 1.0, 1.0]],
|
| 213 |
-
[[0.0, 1.0, 0.0],
|
| 214 |
-
[1.0, 1.0, 1.0],
|
| 215 |
-
[0.0, 1.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 216 |
-
|
| 217 |
-
num_eighteen_neighbors = F.conv3d(img, K_N18, stride=2)
|
| 218 |
-
|
| 219 |
-
subcondition3a = F.hardtanh(num_eighteen_neighbors, min_val=0, max_val=1) # 1 or more neighbors
|
| 220 |
-
subcondition3b = F.hardtanh(-(num_eighteen_neighbors - 2), min_val=0, max_val=1) # 1 or fewer neigbors
|
| 221 |
-
|
| 222 |
-
# ... and cell configration B26 does not exist
|
| 223 |
-
K_B26 = torch.tensor([[[1.0, -1.0, 0.0],
|
| 224 |
-
[-1.0, -1.0, 0.0],
|
| 225 |
-
[0.0, 0.0, 0.0]],
|
| 226 |
-
[[-1.0, -1.0, 0.0],
|
| 227 |
-
[-1.0, 0.0, 0.0],
|
| 228 |
-
[0.0, 0.0, 0.0]],
|
| 229 |
-
[[0.0, 0.0, 0.0],
|
| 230 |
-
[0.0, 0.0, 0.0],
|
| 231 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 232 |
-
|
| 233 |
-
B26_1_present = F.relu(F.conv3d(2.0 * img - 1.0, K_B26, stride=2) - 6)
|
| 234 |
-
B26_2_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2]), stride=2) - 6)
|
| 235 |
-
B26_3_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[3]), stride=2) - 6)
|
| 236 |
-
B26_4_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[4]), stride=2) - 6)
|
| 237 |
-
B26_5_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2, 3]), stride=2) - 6)
|
| 238 |
-
B26_6_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2, 4]), stride=2) - 6)
|
| 239 |
-
B26_7_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[3, 4]), stride=2) - 6)
|
| 240 |
-
B26_8_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2, 3, 4]), stride=2) - 6)
|
| 241 |
-
num_B26_cells = B26_1_present + B26_2_present + B26_3_present + B26_4_present + B26_5_present + B26_6_present + B26_7_present + B26_8_present
|
| 242 |
-
|
| 243 |
-
subcondition3c = F.hardtanh(-(num_B26_cells - 1), min_val=0, max_val=1)
|
| 244 |
-
|
| 245 |
-
condition3 = subcondition3a * subcondition3b * subcondition3c
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
# Condition 4: cell configuration A6 does not exist...
|
| 249 |
-
K_A6 = torch.tensor([[[0.0, 1.0, 0.0],
|
| 250 |
-
[1.0, -1.0, 1.0],
|
| 251 |
-
[0.0, 1.0, 0.0]],
|
| 252 |
-
[[0.0, 0.0, 0.0],
|
| 253 |
-
[0.0, 0.0, 0.0],
|
| 254 |
-
[0.0, 0.0, 0.0]],
|
| 255 |
-
[[0.0, 0.0, 0.0],
|
| 256 |
-
[0.0, 0.0, 0.0],
|
| 257 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 258 |
-
|
| 259 |
-
A6_1_present = F.relu(F.conv3d(2.0 * img - 1.0, K_A6, stride=2) - 4)
|
| 260 |
-
A6_2_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A6, dims=[2, 3]), stride=2) - 4)
|
| 261 |
-
A6_3_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A6, dims=[2, 4]), stride=2) - 4)
|
| 262 |
-
A6_4_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A6, dims=[2]), stride=2) - 4)
|
| 263 |
-
A6_5_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.flip(K_A6, dims=[2]), dims=[2, 3]), stride=2) - 4)
|
| 264 |
-
A6_6_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.flip(K_A6, dims=[2]), dims=[2, 4]), stride=2) - 4)
|
| 265 |
-
num_A6_cells = A6_1_present + A6_2_present + A6_3_present + A6_4_present + A6_5_present + A6_6_present
|
| 266 |
-
|
| 267 |
-
subcondition4a = F.hardtanh(-(num_A6_cells - 1), min_val=0, max_val=1)
|
| 268 |
-
|
| 269 |
-
# ... and cell configuration B26 does not exist...
|
| 270 |
-
K_B26 = torch.tensor([[[1.0, -1.0, 0.0],
|
| 271 |
-
[-1.0, -1.0, 0.0],
|
| 272 |
-
[0.0, 0.0, 0.0]],
|
| 273 |
-
[[-1.0, -1.0, 0.0],
|
| 274 |
-
[-1.0, 0.0, 0.0],
|
| 275 |
-
[0.0, 0.0, 0.0]],
|
| 276 |
-
[[0.0, 0.0, 0.0],
|
| 277 |
-
[0.0, 0.0, 0.0],
|
| 278 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 279 |
-
|
| 280 |
-
B26_1_present = F.relu(F.conv3d(2.0 * img - 1.0, K_B26, stride=2) - 6)
|
| 281 |
-
B26_2_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2]), stride=2) - 6)
|
| 282 |
-
B26_3_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[3]), stride=2) - 6)
|
| 283 |
-
B26_4_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[4]), stride=2) - 6)
|
| 284 |
-
B26_5_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2, 3]), stride=2) - 6)
|
| 285 |
-
B26_6_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2, 4]), stride=2) - 6)
|
| 286 |
-
B26_7_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[3, 4]), stride=2) - 6)
|
| 287 |
-
B26_8_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_B26, dims=[2, 3, 4]), stride=2) - 6)
|
| 288 |
-
num_B26_cells = B26_1_present + B26_2_present + B26_3_present + B26_4_present + B26_5_present + B26_6_present + B26_7_present + B26_8_present
|
| 289 |
-
|
| 290 |
-
subcondition4b = F.hardtanh(-(num_B26_cells - 1), min_val=0, max_val=1)
|
| 291 |
-
|
| 292 |
-
# ... and cell configuration B18 does not exist...
|
| 293 |
-
K_B18 = torch.tensor([[[0.0, 1.0, 0.0],
|
| 294 |
-
[-1.0, -1.0, -1.0],
|
| 295 |
-
[0.0, 0.0, 0.0]],
|
| 296 |
-
[[-1.0, -1.0, -1.0],
|
| 297 |
-
[-1.0, 0.0, -1.0],
|
| 298 |
-
[0.0, 0.0, 0.0]],
|
| 299 |
-
[[0.0, 0.0, 0.0],
|
| 300 |
-
[0.0, 0.0, 0.0],
|
| 301 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 302 |
-
|
| 303 |
-
B18_1_present = F.relu(F.conv3d(2.0 * img - 1.0, K_B18, stride=2) - 8)
|
| 304 |
-
B18_2_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_B18, dims=[2, 4]), stride=2) - 8)
|
| 305 |
-
B18_3_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_B18, dims=[2, 4], k=2), stride=2) - 8)
|
| 306 |
-
B18_4_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_B18, dims=[2, 4], k=3), stride=2) - 8)
|
| 307 |
-
B18_5_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_B18, dims=[3, 4]), stride=2) - 8)
|
| 308 |
-
B18_6_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_B18, dims=[3, 4]), dims=[2, 4]), stride=2) - 8)
|
| 309 |
-
B18_7_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_B18, dims=[3, 4]), dims=[2, 4], k=2), stride=2) - 8)
|
| 310 |
-
B18_8_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_B18, dims=[3, 4]), dims=[2, 4], k=3), stride=2) - 8)
|
| 311 |
-
B18_9_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_B18, dims=[3, 4], k=2), stride=2) - 8)
|
| 312 |
-
B18_10_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_B18, dims=[3, 4], k=2), dims=[2, 4]), stride=2) - 8)
|
| 313 |
-
B18_11_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_B18, dims=[3, 4], k=2), dims=[2, 4], k=2), stride=2) - 8)
|
| 314 |
-
B18_12_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_B18, dims=[3, 4], k=2), dims=[2, 4], k=3), stride=2) - 8)
|
| 315 |
-
num_B18_cells = B18_1_present + B18_2_present + B18_3_present + B18_4_present + B18_5_present + B18_6_present + B18_7_present + B18_8_present + B18_9_present + B18_10_present + B18_11_present + B18_12_present
|
| 316 |
-
|
| 317 |
-
subcondition4c = F.hardtanh(-(num_B18_cells - 1), min_val=0, max_val=1)
|
| 318 |
-
|
| 319 |
-
# ... and the number of zeros in the six-neighborhood minus the number of A18 cell configurations plus the number of A26 cell configurations is exactly one
|
| 320 |
-
K_N6 = torch.tensor([[[0.0, 0.0, 0.0],
|
| 321 |
-
[0.0, 1.0, 0.0],
|
| 322 |
-
[0.0, 0.0, 0.0]],
|
| 323 |
-
[[0.0, 1.0, 0.0],
|
| 324 |
-
[1.0, 0.0, 1.0],
|
| 325 |
-
[0.0, 1.0, 0.0]],
|
| 326 |
-
[[0.0, 0.0, 0.0],
|
| 327 |
-
[0.0, 1.0, 0.0],
|
| 328 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 329 |
-
|
| 330 |
-
num_six_neighbors = F.conv3d(1-img, K_N6, stride=2)
|
| 331 |
-
|
| 332 |
-
K_A18 = torch.tensor([[[0.0, -1.0, 0.0],
|
| 333 |
-
[0.0, -1.0, 0.0],
|
| 334 |
-
[0.0, 0.0, 0.0]],
|
| 335 |
-
[[0.0, -1.0, 0.0],
|
| 336 |
-
[0.0, 0.0, 0.0],
|
| 337 |
-
[0.0, 0.0, 0.0]],
|
| 338 |
-
[[0.0, 0.0, 0.0],
|
| 339 |
-
[0.0, 0.0, 0.0],
|
| 340 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 341 |
-
|
| 342 |
-
A18_1_present = F.relu(F.conv3d(2.0 * img - 1.0, K_A18, stride=2) - 2)
|
| 343 |
-
A18_2_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A18, dims=[2, 4]), stride=2) - 2)
|
| 344 |
-
A18_3_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A18, dims=[2, 4], k=2), stride=2) - 2)
|
| 345 |
-
A18_4_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A18, dims=[2, 4], k=3), stride=2) - 2)
|
| 346 |
-
A18_5_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A18, dims=[3, 4]), stride=2) - 2)
|
| 347 |
-
A18_6_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_A18, dims=[3, 4]), dims=[2, 4]), stride=2) - 2)
|
| 348 |
-
A18_7_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_A18, dims=[3, 4]), dims=[2, 4], k=2), stride=2) - 2)
|
| 349 |
-
A18_8_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_A18, dims=[3, 4]), dims=[2, 4], k=3), stride=2) - 2)
|
| 350 |
-
A18_9_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(K_A18, dims=[3, 4], k=2), stride=2) - 2)
|
| 351 |
-
A18_10_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_A18, dims=[3, 4], k=2), dims=[2, 4]), stride=2) - 2)
|
| 352 |
-
A18_11_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_A18, dims=[3, 4], k=2), dims=[2, 4], k=2), stride=2) - 2)
|
| 353 |
-
A18_12_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.rot90(torch.rot90(K_A18, dims=[3, 4], k=2), dims=[2, 4], k=3), stride=2) - 2)
|
| 354 |
-
num_A18_cells = A18_1_present + A18_2_present + A18_3_present + A18_4_present + A18_5_present + A18_6_present + A18_7_present + A18_8_present + A18_9_present + A18_10_present + A18_11_present + A18_12_present
|
| 355 |
-
|
| 356 |
-
K_A26 = torch.tensor([[[-1.0, -1.0, 0.0],
|
| 357 |
-
[-1.0, -1.0, 0.0],
|
| 358 |
-
[0.0, 0.0, 0.0]],
|
| 359 |
-
[[-1.0, -1.0, 0.0],
|
| 360 |
-
[-1.0, 0.0, 0.0],
|
| 361 |
-
[0.0, 0.0, 0.0]],
|
| 362 |
-
[[0.0, 0.0, 0.0],
|
| 363 |
-
[0.0, 0.0, 0.0],
|
| 364 |
-
[0.0, 0.0, 0.0]]], device=img.device).view(1, 1, 3, 3, 3)
|
| 365 |
-
|
| 366 |
-
A26_1_present = F.relu(F.conv3d(2.0 * img - 1.0, K_A26, stride=2) - 6)
|
| 367 |
-
A26_2_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[2]), stride=2) - 6)
|
| 368 |
-
A26_3_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[3]), stride=2) - 6)
|
| 369 |
-
A26_4_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[4]), stride=2) - 6)
|
| 370 |
-
A26_5_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[2, 3]), stride=2) - 6)
|
| 371 |
-
A26_6_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[2, 4]), stride=2) - 6)
|
| 372 |
-
A26_7_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[3, 4]), stride=2) - 6)
|
| 373 |
-
A26_8_present = F.relu(F.conv3d(2.0 * img - 1.0, torch.flip(K_A26, dims=[2, 3, 4]), stride=2) - 6)
|
| 374 |
-
num_A26_cells = A26_1_present + A26_2_present + A26_3_present + A26_4_present + A26_5_present + A26_6_present + A26_7_present + A26_8_present
|
| 375 |
-
|
| 376 |
-
subcondition4d = F.hardtanh(num_six_neighbors - num_A18_cells + num_A26_cells, min_val=0, max_val=1) # 1 or more configurations
|
| 377 |
-
subcondition4e = F.hardtanh(-(num_six_neighbors - num_A18_cells + num_A26_cells - 2), min_val=0, max_val=1) # 1 or fewer configurations
|
| 378 |
-
|
| 379 |
-
condition4 = subcondition4a * subcondition4b * subcondition4c * subcondition4d * subcondition4e
|
| 380 |
-
|
| 381 |
-
# If any of the four conditions is fulfilled the point is simple
|
| 382 |
-
combined = torch.cat([condition1, condition2, condition3, condition4], dim=1)
|
| 383 |
-
is_simple = torch.amax(combined, dim=1, keepdim=True)
|
| 384 |
-
|
| 385 |
-
return is_simple
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
# Specifically designed to be used with the eight-subfield iterative scheme from above.
|
| 389 |
-
def _euler_characteristic_simple_check(self, img):
|
| 390 |
-
"""
|
| 391 |
-
Function that identifies simple points by assessing whether the Euler characteristic changes when deleting it [1].
|
| 392 |
-
In order to calculate the Euler characteristic, the amount of vertices, edges, faces and octants are counted using convolutions with pre-defined kernels.
|
| 393 |
-
The function is meant to be used in combination with the subfield-based iterative scheme employed in the forward function.
|
| 394 |
-
|
| 395 |
-
[1] Steven Lobregt et al. Three-dimensional skeletonization:principle and algorithm.
|
| 396 |
-
IEEE Transactions on pattern analysis and machine intelligence, 2(1):75-77, 1980.
|
| 397 |
-
"""
|
| 398 |
-
|
| 399 |
-
img = F.pad(img, (1, 1, 1, 1, 1, 1), value=0)
|
| 400 |
-
|
| 401 |
-
# Create masked version of the image where the center of 26-neighborhoods is changed to zero
|
| 402 |
-
mask = torch.ones_like(img)
|
| 403 |
-
mask[:, :, 1::2, 1::2, 1::2] = 0
|
| 404 |
-
masked_img = img.clone() * mask
|
| 405 |
-
|
| 406 |
-
# Count vertices
|
| 407 |
-
vertices = F.relu(-(2.0 * img - 1.0))
|
| 408 |
-
num_vertices = F.avg_pool3d(vertices, (3, 3, 3), stride=2) * 27
|
| 409 |
-
|
| 410 |
-
masked_vertices = F.relu(-(2.0 * masked_img - 1.0))
|
| 411 |
-
num_masked_vertices = F.avg_pool3d(masked_vertices, (3, 3, 3), stride=2) * 27
|
| 412 |
-
|
| 413 |
-
# Count edges
|
| 414 |
-
K_ud_edge = torch.tensor([0.5, 0.5], device=img.device).view(1, 1, 2, 1, 1)
|
| 415 |
-
K_ns_edge = torch.tensor([0.5, 0.5], device=img.device).view(1, 1, 1, 2, 1)
|
| 416 |
-
K_we_edge = torch.tensor([0.5, 0.5], device=img.device).view(1, 1, 1, 1, 2)
|
| 417 |
-
|
| 418 |
-
ud_edges = F.relu(F.conv3d(-(2.0 * img - 1.0), K_ud_edge))
|
| 419 |
-
num_ud_edges = F.avg_pool3d(ud_edges, (2, 3, 3), stride=2) * 18
|
| 420 |
-
ns_edges = F.relu(F.conv3d(-(2.0 * img - 1.0), K_ns_edge))
|
| 421 |
-
num_ns_edges = F.avg_pool3d(ns_edges, (3, 2, 3), stride=2) * 18
|
| 422 |
-
we_edges = F.relu(F.conv3d(-(2.0 * img - 1.0), K_we_edge))
|
| 423 |
-
num_we_edges = F.avg_pool3d(we_edges, (3, 3, 2), stride=2) * 18
|
| 424 |
-
num_edges = num_ud_edges + num_ns_edges + num_we_edges
|
| 425 |
-
|
| 426 |
-
masked_ud_edges = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_ud_edge))
|
| 427 |
-
num_masked_ud_edges = F.avg_pool3d(masked_ud_edges, (2, 3, 3), stride=2) * 18
|
| 428 |
-
masked_ns_edges = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_ns_edge))
|
| 429 |
-
num_masked_ns_edges = F.avg_pool3d(masked_ns_edges, (3, 2, 3), stride=2) * 18
|
| 430 |
-
masked_we_edges = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_we_edge))
|
| 431 |
-
num_masked_we_edges = F.avg_pool3d(masked_we_edges, (3, 3, 2), stride=2) * 18
|
| 432 |
-
num_masked_edges = num_masked_ud_edges + num_masked_ns_edges + num_masked_we_edges
|
| 433 |
-
|
| 434 |
-
# Count faces
|
| 435 |
-
K_ud_face = torch.tensor([[0.25, 0.25], [0.25, 0.25]], device=img.device).view(1, 1, 1, 2, 2)
|
| 436 |
-
K_ns_face = torch.tensor([[0.25, 0.25], [0.25, 0.25]], device=img.device).view(1, 1, 2, 1, 2)
|
| 437 |
-
K_we_face = torch.tensor([[0.25, 0.25], [0.25, 0.25]], device=img.device).view(1, 1, 2, 2, 1)
|
| 438 |
-
|
| 439 |
-
ud_faces = F.relu(F.conv3d(-(2.0 * img - 1.0), K_ud_face) - 0.5) * 2
|
| 440 |
-
num_ud_faces = F.avg_pool3d(ud_faces, (3, 2, 2), stride=2) * 12
|
| 441 |
-
ns_faces = F.relu(F.conv3d(-(2.0 * img - 1.0), K_ns_face) - 0.5) * 2
|
| 442 |
-
num_ns_faces = F.avg_pool3d(ns_faces, (2, 3, 2), stride=2) * 12
|
| 443 |
-
we_faces = F.relu(F.conv3d(-(2.0 * img - 1.0), K_we_face) - 0.5) * 2
|
| 444 |
-
num_we_faces = F.avg_pool3d(we_faces, (2, 2, 3), stride=2) * 12
|
| 445 |
-
num_faces = num_ud_faces + num_ns_faces + num_we_faces
|
| 446 |
-
|
| 447 |
-
masked_ud_faces = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_ud_face) - 0.5) * 2
|
| 448 |
-
num_masked_ud_faces = F.avg_pool3d(masked_ud_faces, (3, 2, 2), stride=2) * 12
|
| 449 |
-
masked_ns_faces = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_ns_face) - 0.5) * 2
|
| 450 |
-
num_masked_ns_faces = F.avg_pool3d(masked_ns_faces, (2, 3, 2), stride=2) * 12
|
| 451 |
-
masked_we_faces = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_we_face) - 0.5) * 2
|
| 452 |
-
num_masked_we_faces = F.avg_pool3d(masked_we_faces, (2, 2, 3), stride=2) * 12
|
| 453 |
-
num_masked_faces = num_masked_ud_faces + num_masked_ns_faces + num_masked_we_faces
|
| 454 |
-
|
| 455 |
-
# Count octants
|
| 456 |
-
K_octants = torch.tensor([[[0.125, 0.125], [0.125, 0.125]], [[0.125, 0.125], [0.125, 0.125]]], device=img.device).view(1, 1, 2, 2, 2)
|
| 457 |
-
|
| 458 |
-
octants = F.relu(F.conv3d(-(2.0 * img - 1.0), K_octants) - 0.75) * 4
|
| 459 |
-
num_octants = F.avg_pool3d(octants, (2, 2, 2), stride=2) * 8
|
| 460 |
-
|
| 461 |
-
masked_octants = F.relu(F.conv3d(-(2.0 * masked_img - 1.0), K_octants) - 0.75) * 4
|
| 462 |
-
num_masked_octants = F.avg_pool3d(masked_octants, (2, 2, 2), stride=2) * 8
|
| 463 |
-
|
| 464 |
-
# Combined number of vertices, edges, faces and octants to calculate the euler characteristic
|
| 465 |
-
euler_characteristic = num_vertices - num_edges + num_faces - num_octants
|
| 466 |
-
masked_euler_characteristic = num_masked_vertices - num_masked_edges + num_masked_faces - num_masked_octants
|
| 467 |
-
|
| 468 |
-
# If the Euler characteristic is unchanged after switching a point from 1 to 0 this indicates that the point is simple
|
| 469 |
-
euler_change = F.hardtanh(torch.abs(masked_euler_characteristic - euler_characteristic), min_val=0, max_val=1)
|
| 470 |
-
is_simple = 1 - euler_change
|
| 471 |
-
is_simple = (is_simple.detach() > 0.5).float() - is_simple.detach() + is_simple
|
| 472 |
-
|
| 473 |
-
return is_simple
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
def _prepare_output(self, img):
|
| 477 |
-
"""
|
| 478 |
-
Function that removes the padding and dimensions added by _prepare_input function.
|
| 479 |
-
"""
|
| 480 |
-
|
| 481 |
-
img = img[:, :, 1:-1, 1:-1, 1:-1]
|
| 482 |
-
|
| 483 |
-
if self.expanded_dims:
|
| 484 |
-
img = torch.squeeze(img, dim=2)
|
| 485 |
-
|
| 486 |
-
return img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
util/tools.py
DELETED
|
@@ -1,143 +0,0 @@
|
|
| 1 |
-
'''
|
| 2 |
-
Author: Jintao Li
|
| 3 |
-
Date: 2022-05-30 16:42:14
|
| 4 |
-
LastEditors: Jintao Li
|
| 5 |
-
LastEditTime: 2022-07-11 23:05:53
|
| 6 |
-
2022 by CIG.
|
| 7 |
-
'''
|
| 8 |
-
|
| 9 |
-
import os, shutil
|
| 10 |
-
import yaml, argparse
|
| 11 |
-
from sklearn.metrics import confusion_matrix
|
| 12 |
-
import numpy as np
|
| 13 |
-
import torch
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def accuracy(output, target):
|
| 17 |
-
'''
|
| 18 |
-
output: [N, num_classes, ...], torch.float
|
| 19 |
-
target: [N, ...], torch.int
|
| 20 |
-
'''
|
| 21 |
-
output = output.argmax(dim=1).flatten().detach().cpu().numpy()
|
| 22 |
-
target = target.flatten().detach().cpu().numpy()
|
| 23 |
-
return pixel_acc(output, target), _miou(output, target)
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
def pixel_acc(output, target):
|
| 27 |
-
r"""
|
| 28 |
-
计算像素准确率 (Pixel Accuracy, PA)
|
| 29 |
-
$$ PA = \frac{\sum_{i=0}^k p_{ii}}
|
| 30 |
-
{\sum_{i=0}^k \sum_{j=0}^k p_{ij}} $$ and
|
| 31 |
-
$n_class = k+1$
|
| 32 |
-
Parameters:
|
| 33 |
-
-----------
|
| 34 |
-
shape: [N, ], (use flatten() function)
|
| 35 |
-
return:
|
| 36 |
-
----------
|
| 37 |
-
- PA
|
| 38 |
-
"""
|
| 39 |
-
assert output.shape == target.shape, "shapes must be same"
|
| 40 |
-
cm = confusion_matrix(target, output)
|
| 41 |
-
return np.diag(cm).sum() / cm.sum()
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def _miou(output, target):
|
| 45 |
-
r"""
|
| 46 |
-
计算均值交并比 MIoU (Mean Intersection over Union)
|
| 47 |
-
$$ MIoU = \frac{1}{k+1} \sum_{i=0}^k \frac{p_{ii}}
|
| 48 |
-
{\sum_{j=0}^k p_{ij} + \sum_{j=0}^k p_{ji} - p_{ii}} $$
|
| 49 |
-
Parameters:
|
| 50 |
-
output, target: [N, ]
|
| 51 |
-
return:
|
| 52 |
-
MIoU
|
| 53 |
-
"""
|
| 54 |
-
assert output.shape == target.shape, "shapes must be same"
|
| 55 |
-
cm = confusion_matrix(target, output)
|
| 56 |
-
intersection = np.diag(cm)
|
| 57 |
-
union = np.sum(cm, 1) + np.sum(cm, 0) - np.diag(cm)
|
| 58 |
-
iou = intersection / union
|
| 59 |
-
miou = np.nanmean(iou)
|
| 60 |
-
|
| 61 |
-
return miou
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
def yaml_config_hook(config_file: str) -> argparse.Namespace:
|
| 65 |
-
"""
|
| 66 |
-
加载yaml文件里面的参数配置, 并生成argparse形式的参数集合
|
| 67 |
-
"""
|
| 68 |
-
with open(config_file) as f:
|
| 69 |
-
cfg = yaml.safe_load(f)
|
| 70 |
-
for d in cfg.get("defaults", []):
|
| 71 |
-
config_dir, cf = d.popitem()
|
| 72 |
-
cf = os.path.join(os.path.dirname(config_file), config_dir,
|
| 73 |
-
cf + ".yaml")
|
| 74 |
-
with open(cf) as f:
|
| 75 |
-
l = yaml.safe_load(f)
|
| 76 |
-
cfg.update(l)
|
| 77 |
-
|
| 78 |
-
if "defaults" in cfg.keys():
|
| 79 |
-
del cfg["defaults"]
|
| 80 |
-
|
| 81 |
-
parser = argparse.ArgumentParser()
|
| 82 |
-
for k, v in cfg.items():
|
| 83 |
-
parser.add_argument(f"--{k}", default=v, type=type(v))
|
| 84 |
-
args = parser.parse_args()
|
| 85 |
-
|
| 86 |
-
return args
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
def backup_code(work_dir, back_dir, exceptions=[], include=[]):
|
| 90 |
-
r"""
|
| 91 |
-
备份本次运行的代码到指定目录下, 并排除某些文件和目录
|
| 92 |
-
|
| 93 |
-
Args:
|
| 94 |
-
work_dir: 工作目录, i.e. 需要备份的代码
|
| 95 |
-
back_dir: 目标目录.备份代码放置的目录
|
| 96 |
-
exception (list): 被排除的目录和以指定后缀结尾的文件, 默认的有
|
| 97 |
-
["__pycache__", ".pyc", ".dat", "backup", ".vscode"]
|
| 98 |
-
include (list): 某些必须被备份的文件,该文件可能在exception里面
|
| 99 |
-
"""
|
| 100 |
-
_exp = [
|
| 101 |
-
"*__pycache__*", "*.pyc", "*.dat", "backup", ".vscode", "*.log",
|
| 102 |
-
"*log*"
|
| 103 |
-
]
|
| 104 |
-
exceptions = exceptions + _exp
|
| 105 |
-
|
| 106 |
-
# if not os.path.exists(back_dir):
|
| 107 |
-
os.makedirs(back_dir, exist_ok=True)
|
| 108 |
-
|
| 109 |
-
shutil.copytree(work_dir,
|
| 110 |
-
back_dir + 'code/',
|
| 111 |
-
ignore=shutil.ignore_patterns(*exceptions),
|
| 112 |
-
dirs_exist_ok=True)
|
| 113 |
-
|
| 114 |
-
for f in include:
|
| 115 |
-
shutil.copyfile(os.path.join(work_dir, f),
|
| 116 |
-
os.path.join(back_dir + 'code', f))
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
def list_files(path, full=False):
|
| 120 |
-
r"""
|
| 121 |
-
递归列出目录下所有的文件,包括子目录下的文件
|
| 122 |
-
"""
|
| 123 |
-
out = []
|
| 124 |
-
for f in os.listdir(path):
|
| 125 |
-
fname = os.path.join(path, f)
|
| 126 |
-
if os.path.isdir(fname):
|
| 127 |
-
fname = list_files(fname)
|
| 128 |
-
out += [os.path.join(f, i) for i in fname]
|
| 129 |
-
else:
|
| 130 |
-
out.append(f)
|
| 131 |
-
if full:
|
| 132 |
-
out = [os.path.join(path, i) for i in out]
|
| 133 |
-
return out
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
if __name__ == "__main__":
|
| 137 |
-
output = torch.randn(4, 2, 6, 6)
|
| 138 |
-
target = torch.randn(4, 2, 6, 6)
|
| 139 |
-
# output = output.cuda()
|
| 140 |
-
# target = target.cuda()
|
| 141 |
-
target = target.argmax(1)
|
| 142 |
-
|
| 143 |
-
accuracy(output, target)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|