Spaces:
Sleeping
Sleeping
File size: 30,021 Bytes
caedbee 097dcdc caedbee df993b7 caedbee d3e9cd1 9433589 caedbee d3e9cd1 5b39c29 df993b7 caedbee df993b7 5b39c29 caedbee 5b39c29 58bbab8 5b39c29 a50912b 58bbab8 1d02fc4 df993b7 caedbee 1d02fc4 df993b7 caedbee 1d02fc4 df993b7 caedbee df993b7 66c6745 df993b7 c3c65c0 df993b7 1d02fc4 c3c65c0 df993b7 caedbee 5b39c29 a50912b caedbee 5b39c29 caedbee 66c6745 df993b7 caedbee 5b39c29 df993b7 caedbee ecb3e47 df993b7 58bbab8 caedbee df993b7 097dcdc df993b7 5bb1ea5 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 ecb3e47 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 f395a8f df993b7 f395a8f df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 ecb3e47 df993b7 caedbee df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 1d02fc4 df993b7 7ef3673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
import os
import sys
import subprocess
import re
import multiprocessing
import atexit
from collections.abc import Iterator
from functools import lru_cache
import datetime
import time
import gradio as gr
import gradio.themes as themes
from huggingface_hub import hf_hub_download, login
import logging
import pandas as pd
import torch
# Set up logging with more detail
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Install llama-cpp-python with appropriate backend
try:
from llama_cpp import Llama
except ModuleNotFoundError:
if torch.cuda.is_available():
logger.info("Installing llama-cpp-python with CUDA support.")
os.environ['CMAKE_ARGS'] = "-DLLAMA_CUDA=ON"
subprocess.check_call([sys.executable, "-m", "pip", "install", "llama-cpp-python", "--force-reinstall", "--upgrade", "--no-cache-dir"])
else:
logger.info("Installing llama-cpp-python without additional flags.")
subprocess.check_call([sys.executable, "-m", "pip", "install", "llama-cpp-python", "--force-reinstall", "--upgrade", "--no-cache-dir"])
from llama_cpp import Llama
# Install yfinance if not present
try:
import yfinance as yf
except ModuleNotFoundError:
subprocess.check_call([sys.executable, "-m", "pip", "install", "yfinance"])
import yfinance as yf
# Additional imports for visualization
try:
import matplotlib.pyplot as plt
from PIL import Image
import io
except ModuleNotFoundError:
subprocess.check_call([sys.executable, "-m", "pip", "install", "matplotlib", "pillow"])
import matplotlib.pyplot as plt
from PIL import Image
import io
# Constants
MAX_MAX_NEW_TOKENS = 512
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "1024"))
YFINANCE_TIMEOUT = 10
CACHE_EXPIRY_HOURS = 1
DESCRIPTION = """# FinChat: Investing Q&A (Optimized for Speed)
This application delivers an interactive chat interface powered by a highly efficient, small AI model adapted for addressing investing and finance inquiries through specialized prompt engineering. It ensures rapid, reasoned responses to user queries.
<p>Running on CPU or GPU if available. Using Phi-2 model for faster inference. Includes performance optimizations with caching and improved error handling.</p>"""
LICENSE = """<p/>
---
This application employs the Phi-2 model, governed by Microsoft's Terms of Use. Refer to the [model card](https://huggingface.co/TheBloke/phi-2-GGUF) for details."""
DEFAULT_SYSTEM_PROMPT = """You are FinChat, a knowledgeable AI assistant specializing in investing and finance. Provide accurate, helpful, reasoned, and concise answers to investing questions. Always base responses on reliable information and advise users to consult professionals for personalized advice.
Always respond exclusively in English. Use bullet points for clarity.
Example:
User: average return for TSLA between 2010 and 2020
Assistant:
- TSLA CAGR (2010-2020): ~63.01%
- Represents average annual return with compounding
- Past performance not indicative of future results
- Consult a financial advisor"""
# Company name to ticker mapping
COMPANY_TO_TICKER = {
"opendoor": "OPEN",
"tesla": "TSLA",
"apple": "AAPL",
"amazon": "AMZN",
"microsoft": "MSFT",
"google": "GOOGL",
"facebook": "META",
"meta": "META",
"nvidia": "NVDA",
"netflix": "NFLX",
}
# Compiled regex patterns for better performance
CAGR_PATTERN = re.compile(
r'(?:average\s+return|cagr)\s+(?:for\s+)?([\w\s,]+(?:and\s+[\w\s,]+)?)\s+(?:between|from)\s+(\d{4})\s+(?:and|to)\s+(\d{4})',
re.IGNORECASE
)
COMPOUND_INTEREST_PATTERN = re.compile(
r'(?:save|invest|deposit)\s*\$?([\d,]+(?:\.\d+)?)\s*(?:right now|today)?\s*(?:under|at)\s*([\d.]+)%\s*(?:interest|rate)?\s*(?:annually|per year)?\s*(?:over|for)\s*(\d+)\s*years?',
re.IGNORECASE
)
# Load the model
try:
model_path = hf_hub_download(
repo_id="TheBloke/phi-2-GGUF",
filename="phi-2.Q4_K_M.gguf"
)
n_gpu_layers = -1 if torch.cuda.is_available() else 0
llm = Llama(
model_path=model_path,
n_ctx=1024,
n_batch=1024,
n_threads=multiprocessing.cpu_count(),
n_gpu_layers=n_gpu_layers,
chat_format="chatml"
)
logger.info(f"Model loaded successfully with n_gpu_layers={n_gpu_layers}.")
# Warm up the model
llm("Warm-up prompt", max_tokens=1, echo=False)
logger.info("Model warm-up completed.")
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
raise
atexit.register(llm.close)
# Cache for stock data with timestamp
_stock_cache = {}
_cache_timestamps = {}
def sanitize_ticker(ticker):
"""Sanitize ticker input to prevent injection and validate format"""
if not ticker or not isinstance(ticker, str):
return None
cleaned = re.sub(r'[^A-Z0-9.-]', '', ticker.upper().strip())
if len(cleaned) > 10 or len(cleaned) == 0:
return None
return cleaned
def validate_year_range(start_year, end_year):
"""Validate year inputs"""
try:
start = int(start_year)
end = int(end_year)
current_year = datetime.datetime.now().year
if not (1900 <= start <= current_year):
return False, f"Start year must be between 1900 and {current_year}"
if not (1900 <= end <= current_year + 1):
return False, f"End year must be between 1900 and {current_year + 1}"
if end <= start:
return False, "End year must be after start year"
return True, "Valid"
except ValueError:
return False, "Years must be valid integers"
@lru_cache(maxsize=100)
def get_stock_data_cached(ticker, start_date, end_date, cache_key):
"""Cache stock data to avoid repeated API calls. cache_key includes hour for expiry."""
try:
logger.info(f"Fetching data for {ticker} from {start_date} to {end_date}")
data = yf.download(
ticker,
start=start_date,
end=end_date,
progress=False,
auto_adjust=False,
timeout=YFINANCE_TIMEOUT
)
return data
except Exception as e:
logger.error(f"Error fetching data for {ticker}: {str(e)}")
return None
def get_current_cache_key():
"""Generate cache key that expires every hour"""
now = datetime.datetime.now()
return f"{now.year}{now.month}{now.day}{now.hour}"
def calculate_cagr(ticker, start_year, end_year):
"""Calculate CAGR for a ticker with error handling"""
try:
# Sanitize ticker
clean_ticker = sanitize_ticker(ticker)
if not clean_ticker:
return f"- {ticker}: Invalid ticker format"
# Validate years
valid, msg = validate_year_range(start_year, end_year)
if not valid:
return f"- {clean_ticker}: {msg}"
# Get cached data
cache_key = get_current_cache_key()
data = get_stock_data_cached(
clean_ticker,
f"{start_year}-01-01",
f"{end_year}-12-31",
cache_key
)
if data is None:
return f"- {clean_ticker}: Error fetching data (API timeout or network issue)"
if data.empty:
return f"- {clean_ticker}: No historical data available between {start_year} and {end_year}"
# Handle MultiIndex columns
if isinstance(data.columns, pd.MultiIndex):
data.columns = data.columns.droplevel(1)
# Check for Adj Close column
if 'Adj Close' not in data.columns:
return f"- {clean_ticker}: Adjusted Close price data not available"
# Calculate CAGR
initial = data['Adj Close'].iloc[0]
final = data['Adj Close'].iloc[-1]
if pd.isna(initial) or pd.isna(final):
return f"- {clean_ticker}: Missing price data"
if initial <= 0 or final <= 0:
return f"- {clean_ticker}: Invalid price data (negative or zero values)"
start_date = data.index[0]
end_date = data.index[-1]
days = (end_date - start_date).days
years = days / 365.25
if years <= 0:
return f"- {clean_ticker}: Invalid time period"
cagr = ((final / initial) ** (1 / years) - 1) * 100
# Add context about data quality
actual_start = start_date.strftime('%Y-%m-%d')
actual_end = end_date.strftime('%Y-%m-%d')
date_note = f" (data: {actual_start} to {actual_end})" if actual_start != f"{start_year}-01-01" else ""
return f"- {clean_ticker}: ~{cagr:.2f}%{date_note}"
except Exception as e:
logger.error(f"Unexpected error calculating CAGR for {ticker}: {str(e)}")
return f"- {ticker}: Calculation error - {str(e)}"
def generate(
message: str,
chat_history: list[dict],
system_prompt: str = DEFAULT_SYSTEM_PROMPT,
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
start_time = time.time()
logger.info(f"Generating response for message: {message[:100]}...")
lower_message = message.lower().strip()
# Quick responses for common queries
if lower_message in ["hi", "hello", "hey"]:
response = "Hello! I'm FinChat, your financial advisor. Ask me anything about investing, stocks, CAGR, compound interest, or portfolio analysis!"
logger.info(f"Quick response generated in {time.time() - start_time:.2f}s")
yield response
return
if "what is cagr" in lower_message:
response = """- CAGR stands for Compound Annual Growth Rate.
- It measures the mean annual growth rate of an investment over a specified period longer than one year, accounting for compounding.
- Formula: CAGR = (Ending Value / Beginning Value)^(1 / Number of Years) - 1
- Useful for comparing investments over time.
- Past performance is not indicative of future results. Consult a financial advisor."""
logger.info(f"Quick response generated in {time.time() - start_time:.2f}s")
yield response
return
# Compound interest calculation
compound_match = COMPOUND_INTEREST_PATTERN.search(lower_message)
if compound_match:
try:
principal_str = compound_match.group(1).replace(',', '')
principal = float(principal_str)
rate = float(compound_match.group(2)) / 100
years = int(compound_match.group(3))
if principal <= 0:
yield "Error: Principal amount must be positive."
return
if rate < 0 or rate > 1:
yield "Error: Interest rate must be between 0% and 100%."
return
if years <= 0 or years > 100:
yield "Error: Years must be between 1 and 100."
return
balance = principal * (1 + rate) ** years
total_interest = balance - principal
response = (
f"**Compound Interest Calculation**\n\n"
f"- Starting Principal: ${principal:,.2f}\n"
f"- Annual Interest Rate: {rate*100:.2f}%\n"
f"- Time Period: {years} years\n"
f"- Compounding: Annually\n\n"
f"**Results:**\n"
f"- Final Balance (Year {years}): ${balance:,.2f}\n"
f"- Total Interest Earned: ${total_interest:,.2f}\n"
f"- Total Growth: {((balance/principal - 1) * 100):.2f}%\n\n"
f"*Note: This assumes annual compounding with no additional deposits or withdrawals. Actual results may vary. Consult a financial advisor.*"
)
logger.info(f"Compound interest calculated in {time.time() - start_time:.2f}s")
yield response
return
except ValueError as ve:
logger.error(f"Error parsing compound interest query: {str(ve)}")
yield "Error: Please ensure amount, rate, and years are valid numbers. Example: 'If I save $10000 at 5% interest over 10 years'"
return
except Exception as e:
logger.error(f"Unexpected error in compound interest: {str(e)}")
yield f"Error calculating compound interest: {str(e)}"
return
# CAGR calculation with improved pattern matching
cagr_match = CAGR_PATTERN.search(lower_message)
if cagr_match:
tickers_str, start_year, end_year = cagr_match.groups()
tickers = [t.strip() for t in re.split(r',|\band\b', tickers_str) if t.strip()]
# Apply company-to-ticker mapping
mapped_tickers = []
for ticker in tickers:
lower_ticker = ticker.lower()
if lower_ticker in COMPANY_TO_TICKER:
mapped_tickers.append(COMPANY_TO_TICKER[lower_ticker])
else:
mapped_tickers.append(ticker.upper())
# Validate year range first
valid, msg = validate_year_range(start_year, end_year)
if not valid:
yield f"Error: {msg}"
return
if len(mapped_tickers) > 10:
yield "Error: Too many tickers requested. Please limit to 10 tickers per query."
return
responses = []
for ticker in mapped_tickers:
result = calculate_cagr(ticker, start_year, end_year)
responses.append(result)
full_response = (
f"**CAGR Analysis ({start_year} - {end_year})**\n\n"
+ "\n".join(responses) +
"\n\n*Notes:*\n"
"- CAGR represents average annual returns with compounding\n"
"- Based on adjusted closing prices\n"
"- Past performance is not indicative of future results\n"
"- Please consult a financial advisor for investment decisions"
)
logger.info(f"CAGR response generated in {time.time() - start_time:.2f}s")
yield full_response
return
# Build conversation for LLM
conversation = [{"role": "system", "content": system_prompt}]
for msg in chat_history[-3:]:
if msg["role"] in ["user", "assistant"]:
conversation.append({"role": msg["role"], "content": msg["content"]})
conversation.append({"role": "user", "content": message})
# Token length check with truncation
prompt_text = "\n".join(d["content"] for d in conversation)
input_tokens = llm.tokenize(prompt_text.encode("utf-8"), add_bos=False)
while len(input_tokens) > MAX_INPUT_TOKEN_LENGTH:
logger.warning(f"Input tokens ({len(input_tokens)}) exceed limit. Truncating history.")
if len(conversation) > 2:
conversation.pop(1)
prompt_text = "\n".join(d["content"] for d in conversation)
input_tokens = llm.tokenize(prompt_text.encode("utf-8"), add_bos=False)
else:
yield "Error: Input is too long. Please shorten your query or start a new conversation."
return
# Generate response
try:
response = ""
sentence_buffer = ""
stream = llm.create_chat_completion(
messages=conversation,
max_tokens=max_new_tokens,
temperature=temperature,
top_p=top_p,
top_k=top_k,
repeat_penalty=repetition_penalty,
stream=True
)
sentence_endings = ['.', '!', '?']
for chunk in stream:
delta = chunk["choices"][0]["delta"]
if "content" in delta and delta["content"] is not None:
cleaned_chunk = re.sub(
r'<\|(?:im_start|im_end|system|user|assistant)\|>|</s>|\[END\]',
'',
delta["content"]
)
if not cleaned_chunk:
continue
sentence_buffer += cleaned_chunk
response += cleaned_chunk
if any(sentence_buffer.strip().endswith(ending) for ending in sentence_endings):
yield response
sentence_buffer = ""
if chunk["choices"][0]["finish_reason"] is not None:
if sentence_buffer.strip():
yield response
break
duration = time.time() - start_time
logger.info(f"LLM response generated in {duration:.2f}s")
except ValueError as ve:
if "exceed context window" in str(ve):
yield "Error: Input exceeds context window. Please try a shorter query."
else:
logger.error(f"ValueError during generation: {str(ve)}")
yield f"Error: {str(ve)}"
except Exception as e:
logger.error(f"Error during response generation: {str(e)}")
yield f"Error generating response. Please try again or rephrase your question."
def process_portfolio(df, growth_rate):
"""Process portfolio with enhanced error handling and validation"""
if df is None or len(df) == 0:
return "", None
try:
if not isinstance(df, pd.DataFrame):
df = pd.DataFrame(df, columns=["Ticker", "Shares", "Avg Cost", "Current Price"])
# Validate and convert numeric columns
for col in ["Shares", "Avg Cost", "Current Price"]:
df[col] = pd.to_numeric(df[col], errors='coerce')
df = df.dropna(subset=["Ticker"])
portfolio = {}
errors = []
for idx, row in df.iterrows():
ticker = sanitize_ticker(row["Ticker"]) if pd.notna(row["Ticker"]) else None
if not ticker:
continue
shares = float(row["Shares"]) if pd.notna(row["Shares"]) else 0
cost = float(row["Avg Cost"]) if pd.notna(row["Avg Cost"]) else 0
price = float(row["Current Price"]) if pd.notna(row["Current Price"]) else 0
if shares <= 0:
errors.append(f"{ticker}: Invalid shares count")
continue
if price < 0 or cost < 0:
errors.append(f"{ticker}: Negative prices not allowed")
continue
value = shares * price
cost_basis = shares * cost
gain_loss = value - cost_basis
gain_loss_pct = (gain_loss / cost_basis * 100) if cost_basis > 0 else 0
portfolio[ticker] = {
'shares': shares,
'cost': cost,
'price': price,
'value': value,
'cost_basis': cost_basis,
'gain_loss': gain_loss,
'gain_loss_pct': gain_loss_pct
}
if not portfolio:
return "No valid portfolio entries found. Please check your data.", None
total_value_now = sum(v['value'] for v in portfolio.values())
total_cost_basis = sum(v['cost_basis'] for v in portfolio.values())
total_gain_loss = total_value_now - total_cost_basis
total_gain_loss_pct = (total_gain_loss / total_cost_basis * 100) if total_cost_basis > 0 else 0
allocations = {k: v['value'] / total_value_now for k, v in portfolio.items()} if total_value_now > 0 else {}
# Create allocation pie chart
fig_alloc, ax_alloc = plt.subplots(figsize=(8, 6))
colors = plt.cm.Set3(range(len(allocations)))
ax_alloc.pie(
allocations.values(),
labels=allocations.keys(),
autopct='%1.1f%%',
colors=colors,
startangle=90
)
ax_alloc.set_title('Portfolio Allocation by Value', fontsize=14, fontweight='bold')
buf_alloc = io.BytesIO()
fig_alloc.savefig(buf_alloc, format='png', bbox_inches='tight', dpi=100)
buf_alloc.seek(0)
chart_alloc = Image.open(buf_alloc)
plt.close(fig_alloc)
# Project future values
def project_value(value, years, rate):
return value * (1 + rate / 100) ** years
projections = {
'1 year': sum(project_value(v['value'], 1, growth_rate) for v in portfolio.values()),
'2 years': sum(project_value(v['value'], 2, growth_rate) for v in portfolio.values()),
'5 years': sum(project_value(v['value'], 5, growth_rate) for v in portfolio.values()),
'10 years': sum(project_value(v['value'], 10, growth_rate) for v in portfolio.values())
}
# Build detailed report
data_str = "**π Portfolio Analysis**\n\n"
data_str += "**Current Holdings:**\n"
for ticker, data in portfolio.items():
data_str += (
f"- {ticker}: {data['shares']:.2f} shares @ ${data['price']:.2f} "
f"(Cost: ${data['cost']:.2f}) = ${data['value']:,.2f} "
f"[{data['gain_loss_pct']:+.2f}%]\n"
)
data_str += f"\n**Portfolio Summary:**\n"
data_str += f"- Total Value: ${total_value_now:,.2f}\n"
data_str += f"- Total Cost Basis: ${total_cost_basis:,.2f}\n"
data_str += f"- Total Gain/Loss: ${total_gain_loss:+,.2f} ({total_gain_loss_pct:+.2f}%)\n"
data_str += f"\n**Projected Values (at {growth_rate}% annual growth):**\n"
for period, value in projections.items():
gain = value - total_value_now
data_str += f"- {period}: ${value:,.2f} (+${gain:,.2f})\n"
if errors:
data_str += f"\n**β οΈ Warnings:**\n"
for error in errors:
data_str += f"- {error}\n"
data_str += "\n*Note: Projections assume constant growth rate and no additional contributions. Actual results will vary. Consult a financial advisor.*"
return data_str, chart_alloc
except Exception as e:
logger.error(f"Error processing portfolio: {str(e)}")
return f"Error processing portfolio: {str(e)}", None
def fetch_current_prices(df):
"""Fetch current prices with timeout and error handling"""
if df is None or len(df) == 0:
return df
try:
if not isinstance(df, pd.DataFrame):
df = pd.DataFrame(df, columns=["Ticker", "Shares", "Avg Cost", "Current Price"])
updated_count = 0
failed_tickers = []
for i in df.index:
ticker = df.at[i, "Ticker"]
if pd.notna(ticker) and ticker.strip():
clean_ticker = sanitize_ticker(ticker)
if not clean_ticker:
failed_tickers.append(f"{ticker} (invalid format)")
continue
try:
ticker_obj = yf.Ticker(clean_ticker)
info = ticker_obj.info
price = info.get('currentPrice') or info.get('regularMarketPrice')
if price is not None and price > 0:
df.at[i, "Current Price"] = price
updated_count += 1
else:
failed_tickers.append(f"{clean_ticker} (no price data)")
except Exception as e:
logger.warning(f"Failed to fetch price for {clean_ticker}: {str(e)}")
failed_tickers.append(f"{clean_ticker} ({str(e)[:30]})")
if updated_count > 0:
logger.info(f"Successfully updated {updated_count} prices")
if failed_tickers:
logger.warning(f"Failed to fetch: {', '.join(failed_tickers)}")
return df
except Exception as e:
logger.error(f"Error in fetch_current_prices: {str(e)}")
return df
# Gradio interface
with gr.Blocks(theme=themes.Soft(), css="""
#chatbot {height: 800px; overflow: auto;}
.performance-note {color: #666; font-size: 0.9em; font-style: italic;}
""") as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot(label="FinChat", type="messages")
msg = gr.Textbox(
label="Ask a finance question",
placeholder="e.g., 'What is CAGR?' or 'Average return for AAPL between 2010 and 2020'",
info="Enter your query. Responses are cached for better performance."
)
with gr.Row():
submit = gr.Button("Submit", variant="primary")
clear = gr.Button("Clear")
gr.Examples(
examples=[
"What is CAGR?",
"Average return for AAPL between 2015 and 2023",
"Average return for TSLA and NVDA between 2018 and 2023",
"If I save $10000 at 5% interest over 10 years",
"Explain compound interest"
],
inputs=msg,
label="Example Queries"
)
with gr.Accordion("π Enter Portfolio for Projections", open=False):
portfolio_df = gr.Dataframe(
headers=["Ticker", "Shares", "Avg Cost", "Current Price"],
datatype=["str", "number", "number", "number"],
row_count=5,
col_count=(4, "fixed"),
label="Portfolio Data",
interactive=True
)
gr.Markdown("""
**Instructions:**
- Enter stock tickers (e.g., AAPL, TSLA)
- Fill in number of shares and your average cost per share
- Click 'Fetch Current Prices' to auto-populate current prices
- Adjust growth rate for future projections
""")
fetch_button = gr.Button("π Fetch Current Prices", variant="secondary")
fetch_button.click(fetch_current_prices, inputs=portfolio_df, outputs=portfolio_df)
growth_rate = gr.Slider(
minimum=0,
maximum=50,
step=1,
value=10,
label="Annual Growth Rate (%)",
interactive=True,
info="Expected annual return for projections (0-50%)"
)
growth_rate_label = gr.Markdown("**Selected Growth Rate: 10%**")
with gr.Accordion("βοΈ Advanced Settings", open=False):
system_prompt = gr.Textbox(
label="System Prompt",
value=DEFAULT_SYSTEM_PROMPT,
lines=6,
info="Customize the AI's behavior"
)
temperature = gr.Slider(
label="Temperature",
value=0.6,
minimum=0.0,
maximum=1.0,
step=0.05,
info="Lower = more focused, Higher = more creative"
)
top_p = gr.Slider(
label="Top P",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
info="Nucleus sampling threshold"
)
top_k = gr.Slider(
label="Top K",
value=50,
minimum=1,
maximum=100,
step=1,
info="Limit to top K tokens"
)
repetition_penalty = gr.Slider(
label="Repetition Penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
info="Penalize repeated tokens"
)
max_new_tokens = gr.Slider(
label="Max New Tokens",
value=DEFAULT_MAX_NEW_TOKENS,
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
info="Maximum length of generated response"
)
gr.Markdown(LICENSE)
gr.Markdown('<p class="performance-note">β‘ Performance optimized with caching and improved error handling</p>')
def update_growth_rate_label(growth_rate):
return f"**Selected Growth Rate: {growth_rate}%**"
def user(message, history):
if not message:
return "", history
return "", history + [{"role": "user", "content": message}]
def bot(history, sys_prompt, temp, tp, tk, rp, mnt, portfolio_df, growth_rate):
if not history:
logger.warning("History is empty, initializing with user message.")
history = [{"role": "user", "content": ""}]
message = history[-1]["content"]
portfolio_data, chart_alloc = process_portfolio(portfolio_df, growth_rate)
if portfolio_data:
message += "\n\n" + portfolio_data
history[-1]["content"] = message
history.append({"role": "assistant", "content": ""})
for new_text in generate(message, history[:-1], sys_prompt, mnt, temp, tp, tk, rp):
history[-1]["content"] = new_text
yield history, f"**Selected Growth Rate: {growth_rate}%**"
if chart_alloc:
# Append chart as a separate message
yield history, f"**Selected Growth Rate: {growth_rate}%**"
growth_rate.change(update_growth_rate_label, inputs=growth_rate, outputs=growth_rate_label)
submit.click(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, system_prompt, temperature, top_p, top_k, repetition_penalty, max_new_tokens, portfolio_df, growth_rate],
[chatbot, growth_rate_label]
)
msg.submit(
user,
[msg, chatbot],
[msg, chatbot],
queue=False
).then(
bot,
[chatbot, system_prompt, temperature, top_p, top_k, repetition_penalty, max_new_tokens, portfolio_df, growth_rate],
[chatbot, growth_rate_label]
)
clear.click(lambda: [], None, chatbot, queue=False)
demo.queue(max_size=128).launch() |