Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from gradio_client import Client
|
| 3 |
+
|
| 4 |
+
# Function to make API prediction
|
| 5 |
+
def predict_image_description(image_url):
|
| 6 |
+
client = Client("https://ashrafb-imdes.hf.space/")
|
| 7 |
+
result = client.predict(image_url, api_name="/predict")
|
| 8 |
+
return result
|
| 9 |
+
|
| 10 |
+
# Streamlit UI
|
| 11 |
+
st.title("Image Description App")
|
| 12 |
+
st.write("Upload an image and click the button to get a description!")
|
| 13 |
+
|
| 14 |
+
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
| 15 |
+
|
| 16 |
+
if uploaded_file is not None:
|
| 17 |
+
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=True)
|
| 18 |
+
st.write("")
|
| 19 |
+
st.write("Classifying...")
|
| 20 |
+
|
| 21 |
+
# Make API prediction
|
| 22 |
+
description = predict_image_description(uploaded_file)
|
| 23 |
+
st.write(f"Description: {description}")
|
| 24 |
+
|