V12
Browse files
app.py
CHANGED
|
@@ -1,653 +1,122 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
-
import
|
| 5 |
-
from transformers import (
|
| 6 |
-
AutoProcessor,
|
| 7 |
-
AutoModelForSpeechSeq2Seq,
|
| 8 |
-
AutoModelForCTC,
|
| 9 |
-
Wav2Vec2Processor,
|
| 10 |
-
Wav2Vec2ForCTC
|
| 11 |
-
)
|
| 12 |
import librosa
|
|
|
|
|
|
|
| 13 |
import time
|
| 14 |
-
import os
|
| 15 |
-
from typing import Dict, Tuple, Optional
|
| 16 |
-
import jiwer
|
| 17 |
-
import warnings
|
| 18 |
-
warnings.filterwarnings("ignore")
|
| 19 |
|
| 20 |
# Model configurations
|
| 21 |
-
|
| 22 |
-
"
|
| 23 |
-
"
|
| 24 |
-
"
|
| 25 |
-
"
|
| 26 |
-
"languages": "22 Indian languages (Hindi, Bengali, Gujarati, Marathi, Tamil, Telugu, Kannada, Malayalam, etc.)",
|
| 27 |
-
"architecture": "Multilingual Conformer-based Hybrid CTC + RNNT",
|
| 28 |
-
"license": "MIT",
|
| 29 |
-
"description": "AI4Bharat's comprehensive ASR model for all 22 official Indian languages"
|
| 30 |
-
},
|
| 31 |
-
"AudioX-North": {
|
| 32 |
-
"repo_id": "placeholder/audiox-north", # Replace with actual repo when available
|
| 33 |
-
"type": "audiox",
|
| 34 |
-
"params": "Unknown",
|
| 35 |
-
"languages": "Hindi, Gujarati, Marathi",
|
| 36 |
-
"architecture": "Fine-tuned ASR with domain adaptation",
|
| 37 |
-
"license": "Unknown",
|
| 38 |
-
"description": "Jivi AI's specialized model for North Indian languages"
|
| 39 |
},
|
| 40 |
-
"
|
| 41 |
-
"
|
| 42 |
-
"
|
| 43 |
-
"
|
| 44 |
-
"languages": "Tamil, Telugu, Kannada, Malayalam",
|
| 45 |
-
"architecture": "Fine-tuned ASR with domain adaptation",
|
| 46 |
-
"license": "Unknown",
|
| 47 |
-
"description": "Jivi AI's specialized model for South Indian languages"
|
| 48 |
},
|
| 49 |
-
"Facebook
|
| 50 |
-
"
|
| 51 |
-
"
|
| 52 |
-
"
|
| 53 |
-
"languages": "1400+ languages worldwide",
|
| 54 |
-
"architecture": "Wav2Vec2 self-supervised pretraining",
|
| 55 |
-
"license": "CC-BY-NC 4.0",
|
| 56 |
-
"description": "Facebook's massive multilingual speech model"
|
| 57 |
}
|
| 58 |
}
|
| 59 |
|
| 60 |
-
#
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
"Telugu": {"AudioX": 24.63, "ElevenLabs": 24.89, "Sarvam": 26.80, "IndicWhisper": 28.82, "Azure": 31.38, "GPT-4": 33.94, "Google": 42.42, "Whisper-v3": 179.58},
|
| 67 |
-
"Kannada": {"AudioX": 17.61, "ElevenLabs": 17.65, "Sarvam": 18.95, "IndicWhisper": 18.33, "Azure": 26.45, "GPT-4": 32.88, "Google": 31.48, "Whisper-v3": 67.02},
|
| 68 |
-
"Malayalam": {"AudioX": 26.92, "ElevenLabs": 28.88, "Sarvam": 32.64, "IndicWhisper": 32.34, "Azure": 41.84, "GPT-4": 46.11, "Google": 47.90, "Whisper-v3": 142.98}
|
| 69 |
-
}
|
| 70 |
-
|
| 71 |
-
class ASRModelManager:
|
| 72 |
-
def __init__(self):
|
| 73 |
-
self.loaded_models = {}
|
| 74 |
-
self.processors = {}
|
| 75 |
-
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 76 |
-
|
| 77 |
-
def load_model(self, model_name: str) -> Tuple[object, object]:
|
| 78 |
-
"""Load model and processor with error handling"""
|
| 79 |
-
if model_name in self.loaded_models:
|
| 80 |
-
return self.loaded_models[model_name], self.processors[model_name]
|
| 81 |
-
|
| 82 |
-
try:
|
| 83 |
-
config = MODELS_CONFIG[model_name]
|
| 84 |
-
repo_id = config["repo_id"]
|
| 85 |
-
model_type = config["type"]
|
| 86 |
-
|
| 87 |
-
if model_type == "conformer":
|
| 88 |
-
# Load IndicConformer model
|
| 89 |
-
processor = AutoProcessor.from_pretrained(repo_id)
|
| 90 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 91 |
-
repo_id,
|
| 92 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 93 |
-
device_map="auto" if torch.cuda.is_available() else None
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
elif model_type == "mms":
|
| 97 |
-
# Load Facebook MMS model
|
| 98 |
-
processor = Wav2Vec2Processor.from_pretrained(repo_id)
|
| 99 |
-
model = Wav2Vec2ForCTC.from_pretrained(repo_id)
|
| 100 |
-
model = model.to(self.device)
|
| 101 |
-
|
| 102 |
-
elif model_type == "audiox":
|
| 103 |
-
# Placeholder for AudioX models - replace with actual implementation
|
| 104 |
-
# For now, using a fallback model for demonstration
|
| 105 |
-
processor = AutoProcessor.from_pretrained("openai/whisper-small")
|
| 106 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained("openai/whisper-small")
|
| 107 |
-
model = model.to(self.device)
|
| 108 |
-
|
| 109 |
-
self.loaded_models[model_name] = model
|
| 110 |
-
self.processors[model_name] = processor
|
| 111 |
-
|
| 112 |
-
return model, processor
|
| 113 |
-
|
| 114 |
-
except Exception as e:
|
| 115 |
-
raise Exception(f"Failed to load {model_name}: {str(e)}")
|
| 116 |
-
|
| 117 |
-
def preprocess_audio(audio_path: str, target_sr: int = 16000) -> Tuple[np.ndarray, int]:
|
| 118 |
-
"""Preprocess audio file for ASR inference"""
|
| 119 |
try:
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
#
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
return audio, sr
|
| 128 |
-
|
| 129 |
except Exception as e:
|
| 130 |
-
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
try:
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
return wer, cer
|
| 142 |
-
|
| 143 |
-
except Exception:
|
| 144 |
-
return 0.0, 0.0
|
| 145 |
|
| 146 |
-
def transcribe_audio(
|
| 147 |
-
audio_file:
|
| 148 |
-
|
| 149 |
-
reference_text: str = "",
|
| 150 |
-
language: str = "auto"
|
| 151 |
-
) -> Tuple[str, str, float, float, float]:
|
| 152 |
-
"""Perform ASR transcription and calculate metrics"""
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
try:
|
| 158 |
-
#
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
# Preprocess audio
|
| 162 |
-
audio, sr = preprocess_audio(audio_file)
|
| 163 |
audio_duration = len(audio) / sr
|
| 164 |
|
| 165 |
-
#
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
# Perform transcription based on model type
|
| 169 |
-
config = MODELS_CONFIG[model_name]
|
| 170 |
-
|
| 171 |
-
if config["type"] == "conformer":
|
| 172 |
-
# IndicConformer inference
|
| 173 |
-
inputs = processor(
|
| 174 |
-
audio,
|
| 175 |
-
sampling_rate=sr,
|
| 176 |
-
return_tensors="pt",
|
| 177 |
-
padding=True
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
if torch.cuda.is_available():
|
| 181 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 182 |
-
|
| 183 |
-
with torch.no_grad():
|
| 184 |
-
predicted_ids = model.generate(**inputs, max_length=448)
|
| 185 |
-
|
| 186 |
-
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 187 |
-
|
| 188 |
-
elif config["type"] == "mms":
|
| 189 |
-
# Facebook MMS inference
|
| 190 |
-
inputs = processor(
|
| 191 |
-
audio,
|
| 192 |
-
sampling_rate=sr,
|
| 193 |
-
return_tensors="pt",
|
| 194 |
-
padding=True
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
if torch.cuda.is_available():
|
| 198 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 199 |
-
|
| 200 |
-
with torch.no_grad():
|
| 201 |
-
logits = model(**inputs).logits
|
| 202 |
-
|
| 203 |
-
predicted_ids = torch.argmax(logits, dim=-1)
|
| 204 |
-
transcription = processor.decode(predicted_ids[0])
|
| 205 |
-
|
| 206 |
-
elif config["type"] == "audiox":
|
| 207 |
-
# AudioX placeholder implementation
|
| 208 |
-
inputs = processor(
|
| 209 |
-
audio,
|
| 210 |
-
sampling_rate=sr,
|
| 211 |
-
return_tensors="pt"
|
| 212 |
-
)
|
| 213 |
-
|
| 214 |
-
if torch.cuda.is_available():
|
| 215 |
-
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
| 216 |
-
|
| 217 |
-
with torch.no_grad():
|
| 218 |
-
predicted_ids = model.generate(**inputs, max_length=448)
|
| 219 |
-
|
| 220 |
-
transcription = processor.decode(predicted_ids[0], skip_special_tokens=True)
|
| 221 |
-
|
| 222 |
-
# Calculate processing time and RTF
|
| 223 |
-
end_time = time.time()
|
| 224 |
-
processing_time = end_time - start_time
|
| 225 |
-
rtf = processing_time / audio_duration
|
| 226 |
-
|
| 227 |
-
# Calculate WER and CER if reference provided
|
| 228 |
-
wer, cer = 0.0, 0.0
|
| 229 |
-
if reference_text.strip():
|
| 230 |
-
wer, cer = calculate_wer_cer(reference_text.strip(), transcription.strip())
|
| 231 |
-
|
| 232 |
-
# Format model info
|
| 233 |
-
model_info = f"""
|
| 234 |
-
🤖 Model: {model_name}
|
| 235 |
-
📊 Parameters: {config['params']}
|
| 236 |
-
🗣️ Languages: {config['languages']}
|
| 237 |
-
⚙️ Architecture: {config['architecture']}
|
| 238 |
-
⏱️ Processing Time: {processing_time:.2f}s
|
| 239 |
-
🎵 Audio Duration: {audio_duration:.2f}s
|
| 240 |
-
"""
|
| 241 |
-
|
| 242 |
-
return transcription.strip(), model_info, wer, cer, rtf
|
| 243 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 244 |
except Exception as e:
|
| 245 |
-
return f"
|
| 246 |
-
|
| 247 |
-
def create_benchmark_table():
|
| 248 |
-
"""Create the Vistaar benchmark comparison table"""
|
| 249 |
-
# Headers
|
| 250 |
-
headers = ["Language", "AudioX", "ElevenLabs", "Sarvam", "IndicWhisper", "Azure STT", "GPT-4", "Google STT", "Whisper-v3"]
|
| 251 |
-
|
| 252 |
-
# Data rows
|
| 253 |
-
rows = []
|
| 254 |
-
for lang, scores in VISTAAR_BENCHMARK.items():
|
| 255 |
-
row = [lang] + [f"{score:.2f}%" for score in scores.values()]
|
| 256 |
-
rows.append(row)
|
| 257 |
-
|
| 258 |
-
# Calculate and add average row
|
| 259 |
-
avg_row = ["🏆 Average"]
|
| 260 |
-
for provider in VISTAAR_BENCHMARK["Hindi"].keys():
|
| 261 |
-
avg_score = np.mean([VISTAAR_BENCHMARK[lang][provider] for lang in VISTAAR_BENCHMARK.keys()])
|
| 262 |
-
avg_row.append(f"{avg_score:.2f}%")
|
| 263 |
-
rows.append(avg_row)
|
| 264 |
-
|
| 265 |
-
return [headers] + rows
|
| 266 |
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
rows = [
|
| 272 |
-
["IndicConformer-600M", "600M", "22 Indian", "Conformer CTC+RNNT", "MIT", "Comprehensive coverage"],
|
| 273 |
-
["AudioX-North", "Unknown", "Hindi, Gujarati, Marathi", "Fine-tuned ASR", "Unknown", "North Indian optimization"],
|
| 274 |
-
["AudioX-South", "Unknown", "Tamil, Telugu, Kannada, Malayalam", "Fine-tuned ASR", "Unknown", "South Indian optimization"],
|
| 275 |
-
["Facebook MMS", "1B", "1400+ Global", "Wav2Vec2", "CC-BY-NC 4.0", "Massive multilingual"]
|
| 276 |
-
]
|
| 277 |
-
|
| 278 |
-
return [headers] + rows
|
| 279 |
-
|
| 280 |
-
# Initialize model manager
|
| 281 |
-
model_manager = ASRModelManager()
|
| 282 |
-
|
| 283 |
-
# Create Gradio interface
|
| 284 |
-
with gr.Blocks(
|
| 285 |
-
title="🎯 ASR Model Comparison: IndicConformer vs AudioX vs MMS",
|
| 286 |
-
theme=gr.themes.Soft(),
|
| 287 |
-
css="""
|
| 288 |
-
.performance-card {
|
| 289 |
-
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 290 |
-
padding: 1rem;
|
| 291 |
-
border-radius: 10px;
|
| 292 |
-
color: white;
|
| 293 |
-
margin: 0.5rem 0;
|
| 294 |
-
}
|
| 295 |
-
.metric-highlight {
|
| 296 |
-
background: #f0f9ff;
|
| 297 |
-
padding: 0.5rem;
|
| 298 |
-
border-left: 4px solid #3b82f6;
|
| 299 |
-
margin: 0.5rem 0;
|
| 300 |
-
}
|
| 301 |
-
"""
|
| 302 |
-
) as demo:
|
| 303 |
-
|
| 304 |
-
gr.Markdown("""
|
| 305 |
-
# 🎯 Comprehensive ASR Model Comparison Dashboard
|
| 306 |
-
|
| 307 |
-
Compare three cutting-edge Automatic Speech Recognition models for Indian languages:
|
| 308 |
-
|
| 309 |
-
- 🇮🇳 **AI4Bharat IndicConformer-600M**: Complete 22 Indian language coverage
|
| 310 |
-
- 🎯 **Jivi AI AudioX**: Specialized North/South variants with industry-leading accuracy
|
| 311 |
-
- 🌍 **Facebook MMS**: Massive 1B parameter multilingual model
|
| 312 |
-
|
| 313 |
-
## 🏆 Key Highlight: AudioX achieves **20.1% average WER** - Best in class performance!
|
| 314 |
-
""")
|
| 315 |
-
|
| 316 |
-
with gr.Tabs():
|
| 317 |
-
|
| 318 |
-
# Live Testing Tab
|
| 319 |
-
with gr.TabItem("🎤 Live ASR Testing"):
|
| 320 |
-
gr.Markdown("### Upload audio and test model performance in real-time")
|
| 321 |
-
|
| 322 |
-
with gr.Row():
|
| 323 |
-
with gr.Column(scale=1):
|
| 324 |
-
audio_input = gr.Audio(
|
| 325 |
-
label="📁 Upload Audio File",
|
| 326 |
-
type="filepath",
|
| 327 |
-
format="wav"
|
| 328 |
-
)
|
| 329 |
-
|
| 330 |
-
model_selector = gr.Dropdown(
|
| 331 |
-
choices=list(MODELS_CONFIG.keys()),
|
| 332 |
-
label="🤖 Select ASR Model",
|
| 333 |
-
value="IndicConformer-600M",
|
| 334 |
-
info="Choose the model for transcription"
|
| 335 |
-
)
|
| 336 |
-
|
| 337 |
-
reference_input = gr.Textbox(
|
| 338 |
-
label="📝 Reference Text (Optional)",
|
| 339 |
-
placeholder="Enter the correct transcription for accuracy calculation...",
|
| 340 |
-
lines=3,
|
| 341 |
-
info="Provide ground truth text to calculate WER and CER"
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
transcribe_button = gr.Button(
|
| 345 |
-
"🚀 Transcribe Audio",
|
| 346 |
-
variant="primary",
|
| 347 |
-
size="lg"
|
| 348 |
-
)
|
| 349 |
-
|
| 350 |
-
with gr.Column(scale=1):
|
| 351 |
-
transcription_output = gr.Textbox(
|
| 352 |
-
label="📄 Transcription Result",
|
| 353 |
-
lines=5,
|
| 354 |
-
max_lines=8
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
model_info_output = gr.Textbox(
|
| 358 |
-
label="ℹ️ Model Information",
|
| 359 |
-
lines=7
|
| 360 |
-
)
|
| 361 |
-
|
| 362 |
-
with gr.Row():
|
| 363 |
-
with gr.Column():
|
| 364 |
-
wer_output = gr.Number(
|
| 365 |
-
label="📊 Word Error Rate (WER %)",
|
| 366 |
-
precision=2,
|
| 367 |
-
info="Lower is better"
|
| 368 |
-
)
|
| 369 |
-
with gr.Column():
|
| 370 |
-
cer_output = gr.Number(
|
| 371 |
-
label="📊 Character Error Rate (CER %)",
|
| 372 |
-
precision=2,
|
| 373 |
-
info="Lower is better"
|
| 374 |
-
)
|
| 375 |
-
with gr.Column():
|
| 376 |
-
rtf_output = gr.Number(
|
| 377 |
-
label="⚡ Real-Time Factor (RTF)",
|
| 378 |
-
precision=3,
|
| 379 |
-
info="< 1.0 = faster than real-time"
|
| 380 |
-
)
|
| 381 |
-
|
| 382 |
-
# Benchmark Results Tab
|
| 383 |
-
with gr.TabItem("📊 Vistaar Benchmark Results"):
|
| 384 |
-
gr.Markdown("""
|
| 385 |
-
## 🏆 Official Vistaar Benchmark Comparison (WER %)
|
| 386 |
-
|
| 387 |
-
Performance evaluation on AI4Bharat's standardized Vistaar benchmark across 7 Indian languages.
|
| 388 |
-
**Lower WER indicates better accuracy** ⬇️
|
| 389 |
-
""")
|
| 390 |
-
|
| 391 |
-
benchmark_df = gr.Dataframe(
|
| 392 |
-
value=create_benchmark_table(),
|
| 393 |
-
label="📈 Word Error Rate Comparison",
|
| 394 |
-
interactive=False,
|
| 395 |
-
wrap=True
|
| 396 |
-
)
|
| 397 |
-
|
| 398 |
-
gr.Markdown("""
|
| 399 |
-
### 🎯 Key Performance Insights:
|
| 400 |
-
|
| 401 |
-
| 🏅 Rank | Model | Avg WER | Strength |
|
| 402 |
-
|---------|-------|---------|----------|
|
| 403 |
-
| 🥇 1st | **AudioX** | **20.1%** | Consistently best across languages |
|
| 404 |
-
| 🥈 2nd | ElevenLabs Scribe-v1 | 20.6% | Strong competitor, especially in Gujarati |
|
| 405 |
-
| 🥉 3rd | Sarvam saarika:v2 | 22.3% | Solid performance across the board |
|
| 406 |
-
| 4th | AI4Bharat IndicWhisper | 22.8% | Good baseline for comparison |
|
| 407 |
-
| 5th | Microsoft Azure STT | 30.0% | Commercial solution performance |
|
| 408 |
-
|
| 409 |
-
### 💡 Analysis:
|
| 410 |
-
- **AudioX dominates** in 5 out of 7 languages
|
| 411 |
-
- **Specialized models outperform** general commercial solutions
|
| 412 |
-
- **Malayalam and Telugu** are the most challenging languages across all models
|
| 413 |
-
- **Hindi** shows the best performance across all models
|
| 414 |
-
""")
|
| 415 |
-
|
| 416 |
-
# Model Architecture Tab
|
| 417 |
-
with gr.TabItem("⚙️ Model Architecture & Specs"):
|
| 418 |
-
gr.Markdown("## 🔧 Technical Specifications Comparison")
|
| 419 |
-
|
| 420 |
-
specs_df = gr.Dataframe(
|
| 421 |
-
value=create_model_specs_table(),
|
| 422 |
-
label="📋 Model Architecture Details",
|
| 423 |
-
interactive=False
|
| 424 |
-
)
|
| 425 |
-
|
| 426 |
-
with gr.Row():
|
| 427 |
-
with gr.Column():
|
| 428 |
-
gr.Markdown("""
|
| 429 |
-
### 🎯 IndicConformer-600M
|
| 430 |
-
|
| 431 |
-
**🏗️ Architecture**: Hybrid CTC + RNNT Conformer
|
| 432 |
-
**🎯 Focus**: Comprehensive Indian language coverage
|
| 433 |
-
**📊 Training**: Large-scale multilingual approach
|
| 434 |
-
**⚡ Inference**: Dual decoding strategies
|
| 435 |
-
**🎭 Use Cases**:
|
| 436 |
-
- General-purpose Indian ASR
|
| 437 |
-
- Research and development
|
| 438 |
-
- Educational applications
|
| 439 |
-
|
| 440 |
-
**✅ Strengths**:
|
| 441 |
-
- Open-source MIT license
|
| 442 |
-
- Covers all 22 official languages
|
| 443 |
-
- Well-documented and accessible
|
| 444 |
-
""")
|
| 445 |
-
|
| 446 |
-
with gr.Column():
|
| 447 |
-
gr.Markdown("""
|
| 448 |
-
### 🏆 AudioX Series
|
| 449 |
-
|
| 450 |
-
**🏗️ Architecture**: Specialized fine-tuned models
|
| 451 |
-
**🎯 Focus**: Language-specific optimization
|
| 452 |
-
**📊 Training**: Open-source + proprietary medical data
|
| 453 |
-
**⚡ Inference**: Optimized for production
|
| 454 |
-
**🎭 Use Cases**:
|
| 455 |
-
- Production voice assistants
|
| 456 |
-
- Healthcare transcription
|
| 457 |
-
- Customer service automation
|
| 458 |
-
- Content creation platforms
|
| 459 |
-
|
| 460 |
-
**✅ Strengths**:
|
| 461 |
-
- Industry-leading accuracy
|
| 462 |
-
- Regional accent handling
|
| 463 |
-
- Robust to noise and variations
|
| 464 |
-
""")
|
| 465 |
-
|
| 466 |
-
with gr.Column():
|
| 467 |
-
gr.Markdown("""
|
| 468 |
-
### 🌍 Facebook MMS
|
| 469 |
-
|
| 470 |
-
**🏗️ Architecture**: Wav2Vec2 self-supervised
|
| 471 |
-
**🎯 Focus**: Massive multilingual coverage
|
| 472 |
-
**📊 Training**: 500K hours, 1400+ languages
|
| 473 |
-
**⚡ Inference**: Requires task-specific fine-tuning
|
| 474 |
-
**🎭 Use Cases**:
|
| 475 |
-
- Research in multilingual ASR
|
| 476 |
-
- Low-resource language support
|
| 477 |
-
- Cross-lingual applications
|
| 478 |
-
- Base model for fine-tuning
|
| 479 |
-
|
| 480 |
-
**✅ Strengths**:
|
| 481 |
-
- Unprecedented language coverage
|
| 482 |
-
- Strong foundation model
|
| 483 |
-
- Excellent for rare languages
|
| 484 |
-
""")
|
| 485 |
-
|
| 486 |
-
# Performance Analysis Tab
|
| 487 |
-
with gr.TabItem("📈 Performance Deep Dive"):
|
| 488 |
-
gr.Markdown("""
|
| 489 |
-
# 🔍 Detailed Performance Analysis
|
| 490 |
-
|
| 491 |
-
## 📊 Understanding ASR Metrics
|
| 492 |
-
""")
|
| 493 |
-
|
| 494 |
-
with gr.Row():
|
| 495 |
-
with gr.Column():
|
| 496 |
-
gr.Markdown("""
|
| 497 |
-
### 📉 Word Error Rate (WER)
|
| 498 |
-
|
| 499 |
-
**Formula**: `(S + D + I) / N × 100%`
|
| 500 |
-
- **S**: Substitutions
|
| 501 |
-
- **D**: Deletions
|
| 502 |
-
- **I**: Insertions
|
| 503 |
-
- **N**: Total words in reference
|
| 504 |
-
|
| 505 |
-
**Interpretation**:
|
| 506 |
-
- **< 5%**: Excellent
|
| 507 |
-
- **5-15%**: Good
|
| 508 |
-
- **15-30%**: Fair
|
| 509 |
-
- **> 30%**: Poor
|
| 510 |
-
""")
|
| 511 |
-
|
| 512 |
-
with gr.Column():
|
| 513 |
-
gr.Markdown("""
|
| 514 |
-
### 🔤 Character Error Rate (CER)
|
| 515 |
-
|
| 516 |
-
**Formula**: Same as WER but at character level
|
| 517 |
-
|
| 518 |
-
**Why CER matters**:
|
| 519 |
-
- Better for morphologically rich languages
|
| 520 |
-
- Captures partial word recognition
|
| 521 |
-
- Useful for downstream NLP tasks
|
| 522 |
-
- More granular error analysis
|
| 523 |
-
|
| 524 |
-
**Typical Range**: Usually lower than WER
|
| 525 |
-
""")
|
| 526 |
-
|
| 527 |
-
with gr.Column():
|
| 528 |
-
gr.Markdown("""
|
| 529 |
-
### ⚡ Real-Time Factor (RTF)
|
| 530 |
-
|
| 531 |
-
**Formula**: `Processing Time / Audio Duration`
|
| 532 |
-
|
| 533 |
-
**Interpretation**:
|
| 534 |
-
- **RTF < 1.0**: ⚡ Faster than real-time
|
| 535 |
-
- **RTF = 1.0**: 🎯 Real-time processing
|
| 536 |
-
- **RTF > 1.0**: 🐌 Slower than real-time
|
| 537 |
-
|
| 538 |
-
**Production Requirements**:
|
| 539 |
-
- Live applications: RTF < 0.3
|
| 540 |
-
- Batch processing: RTF < 1.0 acceptable
|
| 541 |
-
""")
|
| 542 |
-
|
| 543 |
-
gr.Markdown("""
|
| 544 |
-
## 🏆 Language-Specific Performance Champions
|
| 545 |
-
|
| 546 |
-
| Language | 🥇 Best Model | WER Score | 🎯 Insights |
|
| 547 |
-
|----------|-------------|-----------|-----------|
|
| 548 |
-
| **Hindi** | AudioX | 12.14% | Strongest performance, most data available |
|
| 549 |
-
| **Gujarati** | ElevenLabs | 17.96% | Close race with AudioX (18.66%) |
|
| 550 |
-
| **Marathi** | ElevenLabs | 16.51% | Competitive performance across models |
|
| 551 |
-
| **Tamil** | AudioX | 21.79% | Dravidian language complexity handled well |
|
| 552 |
-
| **Telugu** | AudioX | 24.63% | Challenging agglutinative morphology |
|
| 553 |
-
| **Kannada** | AudioX | 17.61% | Consistent South Indian performance |
|
| 554 |
-
| **Malayalam** | AudioX | 26.92% | Most challenging across all models |
|
| 555 |
-
|
| 556 |
-
### 🔍 Key Observations:
|
| 557 |
-
|
| 558 |
-
1. **AudioX Dominance**: Wins in 6 out of 7 languages
|
| 559 |
-
2. **Language Difficulty**: Malayalam > Telugu > Tamil (Dravidian complexity)
|
| 560 |
-
3. **Commercial Gap**: 10-15% WER difference vs specialized models
|
| 561 |
-
4. **Regional Patterns**: North Indian languages generally perform better
|
| 562 |
-
5. **Model Specialization**: Purpose-built models significantly outperform generic ones
|
| 563 |
-
""")
|
| 564 |
-
|
| 565 |
-
# Usage Guidelines Tab
|
| 566 |
-
with gr.TabItem("📖 Usage Guidelines"):
|
| 567 |
-
gr.Markdown("""
|
| 568 |
-
# 🚀 Model Selection Guide
|
| 569 |
-
|
| 570 |
-
## 🎯 Which Model Should You Choose?
|
| 571 |
-
""")
|
| 572 |
-
|
| 573 |
-
with gr.Row():
|
| 574 |
-
with gr.Column():
|
| 575 |
-
gr.Markdown("""
|
| 576 |
-
### 🏆 Choose AudioX When:
|
| 577 |
-
|
| 578 |
-
✅ **Production Applications**
|
| 579 |
-
✅ **Highest Accuracy Requirements**
|
| 580 |
-
✅ **North/South Indian Languages**
|
| 581 |
-
✅ **Real-time Processing**
|
| 582 |
-
✅ **Commercial Deployment**
|
| 583 |
-
✅ **Healthcare/Medical Domain**
|
| 584 |
-
|
| 585 |
-
**Best For**: Voice assistants, transcription services, customer support
|
| 586 |
-
""")
|
| 587 |
-
|
| 588 |
-
with gr.Column():
|
| 589 |
-
gr.Markdown("""
|
| 590 |
-
### 🎓 Choose IndicConformer When:
|
| 591 |
-
|
| 592 |
-
✅ **Research & Development**
|
| 593 |
-
✅ **Open Source Requirements**
|
| 594 |
-
✅ **All 22 Indian Languages**
|
| 595 |
-
✅ **Educational Projects**
|
| 596 |
-
✅ **Custom Fine-tuning**
|
| 597 |
-
✅ **Experimental Work**
|
| 598 |
-
|
| 599 |
-
**Best For**: Academic research, prototyping, learning
|
| 600 |
-
""")
|
| 601 |
-
|
| 602 |
-
with gr.Column():
|
| 603 |
-
gr.Markdown("""
|
| 604 |
-
### 🌍 Choose Facebook MMS When:
|
| 605 |
-
|
| 606 |
-
✅ **Rare/Low-resource Languages**
|
| 607 |
-
✅ **Multilingual Applications**
|
| 608 |
-
✅ **Transfer Learning Base**
|
| 609 |
-
✅ **Research in Multilingual ASR**
|
| 610 |
-
✅ **Cross-lingual Studies**
|
| 611 |
-
✅ **Foundation Model Needs**
|
| 612 |
-
|
| 613 |
-
**Best For**: Research, rare languages, base model
|
| 614 |
-
""")
|
| 615 |
-
|
| 616 |
-
gr.Markdown("""
|
| 617 |
-
## 🛠️ Implementation Tips
|
| 618 |
-
|
| 619 |
-
### 📋 Pre-processing Recommendations:
|
| 620 |
-
- **Sample Rate**: Ensure 16kHz for all models
|
| 621 |
-
- **Audio Format**: WAV preferred over compressed formats
|
| 622 |
-
- **Noise Reduction**: Apply basic denoising for better results
|
| 623 |
-
- **Normalization**: Audio amplitude normalization recommended
|
| 624 |
-
|
| 625 |
-
### ⚡ Performance Optimization:
|
| 626 |
-
- **GPU Usage**: Significant speedup with CUDA-enabled devices
|
| 627 |
-
- **Batch Processing**: Process multiple files together when possible
|
| 628 |
-
- **Model Caching**: Keep models loaded in memory for repeated use
|
| 629 |
-
- **Quantization**: Consider model quantization for deployment
|
| 630 |
-
|
| 631 |
-
### 🎯 Accuracy Improvement:
|
| 632 |
-
- **Domain Adaptation**: Fine-tune on domain-specific data when possible
|
| 633 |
-
- **Language Models**: Integrate external LMs for better word-level accuracy
|
| 634 |
-
- **Post-processing**: Apply spelling correction and grammar checking
|
| 635 |
-
- **Ensemble Methods**: Combine multiple models for critical applications
|
| 636 |
-
""")
|
| 637 |
-
|
| 638 |
-
# Event handlers
|
| 639 |
-
transcribe_button.click(
|
| 640 |
fn=transcribe_audio,
|
| 641 |
-
inputs=[
|
| 642 |
-
|
| 643 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 644 |
)
|
| 645 |
|
| 646 |
-
# Launch configuration
|
| 647 |
if __name__ == "__main__":
|
| 648 |
-
|
| 649 |
-
|
| 650 |
-
server_name="0.0.0.0",
|
| 651 |
-
server_port=7860,
|
| 652 |
-
show_error=True
|
| 653 |
-
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, AutoModelForCTC
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import librosa
|
| 6 |
+
import numpy as np
|
| 7 |
+
from jiwer import wer, cer
|
| 8 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
# Model configurations
|
| 11 |
+
MODEL_CONFIGS = {
|
| 12 |
+
"AudioX-North (Jivi AI)": {
|
| 13 |
+
"repo": "jiviai/audioX-north-v1",
|
| 14 |
+
"model_type": "seq2seq",
|
| 15 |
+
"description": "Supports Hindi, Gujarati, Marathi"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
},
|
| 17 |
+
"IndicConformer (AI4Bharat)": {
|
| 18 |
+
"repo": "ai4bharat/indic-conformer-600m-multilingual",
|
| 19 |
+
"model_type": "ctc_rnnt",
|
| 20 |
+
"description": "Supports 22 Indian languages"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
},
|
| 22 |
+
"MMS (Facebook)": {
|
| 23 |
+
"repo": "facebook/mms-1b",
|
| 24 |
+
"model_type": "ctc",
|
| 25 |
+
"description": "Supports over 1,400 languages (fine-tuning recommended)"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
}
|
| 27 |
}
|
| 28 |
|
| 29 |
+
# Load model and processor
|
| 30 |
+
def load_model_and_processor(model_name):
|
| 31 |
+
config = MODEL_CONFIGS[model_name]
|
| 32 |
+
repo = config["repo"]
|
| 33 |
+
model_type = config["model_type"]
|
| 34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
try:
|
| 36 |
+
processor = AutoProcessor.from_pretrained(repo)
|
| 37 |
+
if model_type == "seq2seq":
|
| 38 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(repo)
|
| 39 |
+
else: # ctc or ctc_rnnt
|
| 40 |
+
model = AutoModelForCTC.from_pretrained(repo)
|
| 41 |
+
return model, processor, model_type
|
|
|
|
|
|
|
|
|
|
| 42 |
except Exception as e:
|
| 43 |
+
return None, None, f"Error loading model: {str(e)}"
|
| 44 |
|
| 45 |
+
# Compute metrics (WER, CER, RTF)
|
| 46 |
+
def compute_metrics(reference, hypothesis, audio_duration):
|
| 47 |
+
if not reference or not hypothesis:
|
| 48 |
+
return None, None, None
|
| 49 |
try:
|
| 50 |
+
wer_score = wer(reference, hypothesis)
|
| 51 |
+
cer_score = cer(reference, hypothesis)
|
| 52 |
+
rtf = audio_duration / time.time() # Simplified; actual RTF needs processing time
|
| 53 |
+
return wer_score, cer_score, rtf
|
| 54 |
+
except Exception as e:
|
| 55 |
+
return None, None, f"Error computing metrics: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
def transcribe_audio(audio_file, model_name, reference_text=""):
|
| 58 |
+
if not audio_file:
|
| 59 |
+
return "Please upload an audio file.", None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Load model and processor
|
| 62 |
+
model, processor, model_type = load_model_and_processor(model_name)
|
| 63 |
+
if isinstance(model_type, str) and model_type.startswith("Error"):
|
| 64 |
+
return model_type, None, None, None
|
| 65 |
|
| 66 |
try:
|
| 67 |
+
# Load and preprocess audio
|
| 68 |
+
audio, sr = librosa.load(audio_file, sr=16000)
|
|
|
|
|
|
|
|
|
|
| 69 |
audio_duration = len(audio) / sr
|
| 70 |
|
| 71 |
+
# Process audio
|
| 72 |
+
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
|
| 73 |
+
input_features = inputs["input_features"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
+
# Measure processing time for RTF
|
| 76 |
+
start_time = time.time()
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
if model_type == "seq2seq":
|
| 79 |
+
outputs = model.generate(input_features)
|
| 80 |
+
else: # ctc or ctc_rnnt
|
| 81 |
+
outputs = model(input_features).logits
|
| 82 |
+
outputs = torch.argmax(outputs, dim=-1)
|
| 83 |
+
|
| 84 |
+
# Decode transcription
|
| 85 |
+
transcription = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
| 86 |
+
|
| 87 |
+
# Compute metrics if reference text is provided
|
| 88 |
+
wer_score, cer_score, rtf = None, None, None
|
| 89 |
+
if reference_text:
|
| 90 |
+
wer_score, cer_score, rtf_error = compute_metrics(reference_text, transcription, audio_duration)
|
| 91 |
+
if isinstance(rtf_error, str):
|
| 92 |
+
return transcription, wer_score, cer_score, rtf_error
|
| 93 |
+
rtf = (time.time() - start_time) / audio_duration # Actual RTF
|
| 94 |
+
|
| 95 |
+
return transcription, wer_score, cer_score, rtf
|
| 96 |
except Exception as e:
|
| 97 |
+
return f"Error during transcription: {str(e)}", None, None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
# Gradio interface
|
| 100 |
+
def create_interface():
|
| 101 |
+
model_choices = list(MODEL_CONFIGS.keys())
|
| 102 |
+
return gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
fn=transcribe_audio,
|
| 104 |
+
inputs=[
|
| 105 |
+
gr.Audio(type="filepath", label="Upload Audio File (16kHz recommended)"),
|
| 106 |
+
gr.Dropdown(choices=model_choices, label="Select Model", value=model_choices[0]),
|
| 107 |
+
gr.Textbox(label="Reference Text (Optional for WER/CER)", placeholder="Enter ground truth text here")
|
| 108 |
+
],
|
| 109 |
+
outputs=[
|
| 110 |
+
gr.Textbox(label="Transcription"),
|
| 111 |
+
gr.Textbox(label="WER"),
|
| 112 |
+
gr.Textbox(label="CER"),
|
| 113 |
+
gr.Textbox(label="RTF")
|
| 114 |
+
],
|
| 115 |
+
title="Multilingual Speech-to-Text with Metrics",
|
| 116 |
+
description="Upload an audio file, select a model, and optionally provide reference text to compute WER, CER, and RTF.",
|
| 117 |
+
allow_flagging="never"
|
| 118 |
)
|
| 119 |
|
|
|
|
| 120 |
if __name__ == "__main__":
|
| 121 |
+
iface = create_interface()
|
| 122 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|