medically / app.py
AxL95's picture
Update app.py
a9138a1 verified
raw
history blame
32.4 kB
from fastapi import FastAPI, Request, HTTPException,Depends,File, UploadFile, Response
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.staticfiles import StaticFiles
from huggingface_hub import InferenceClient
import secrets
from typing import Optional
from sentence_transformers import SentenceTransformer
from bson.objectid import ObjectId
from datetime import datetime, timedelta
from fastapi import Request
import requests
import numpy as np
import argparse
import os
from pymongo import MongoClient
from datetime import datetime
from passlib.hash import bcrypt
import PyPDF2
from io import BytesIO
import uuid
from langchain_community.embeddings import HuggingFaceEmbeddings
from sklearn.metrics.pairwise import cosine_similarity
import time
from fastapi.responses import StreamingResponse
import json
import asyncio
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
SECRET_KEY = secrets.token_hex(32)
HOST = os.environ.get("API_URL", "0.0.0.0")
PORT = os.environ.get("PORT", 7860)
parser = argparse.ArgumentParser()
parser.add_argument("--host", default=HOST)
parser.add_argument("--port", type=int, default=PORT)
parser.add_argument("--reload", action="store_true", default=True)
parser.add_argument("--ssl_certfile")
parser.add_argument("--ssl_keyfile")
args = parser.parse_args()
# Configuration MongoDB
mongo_uri = os.environ.get("MONGODB_URI", "mongodb+srv://giffardaxel95:[email protected]/")
db_name = os.environ.get("DB_NAME", "chatmed_schizo")
mongo_client = MongoClient(mongo_uri)
db = mongo_client[db_name]
SAVE_FOLDER = "files"
COLLECTION_NAME="connaissances"
os.makedirs(SAVE_FOLDER, exist_ok=True)
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=[
"https://axl95-medically.hf.space",
"https://huggingface.co",
"http://localhost:3000",
"http://localhost:7860",
"http://0.0.0.0:7860"
],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def download_pdf(url, save_path, retries=2, delay=3):
for attempt in range(retries):
try:
req = Request(url, headers={'User-Agent': 'Mozilla/5.0'})
with urlopen(req) as response, open(save_path, 'wb') as f:
f.write(response.read())
print(f"Téléchargé : {save_path}")
return
except (HTTPError, URLError) as e:
print(f"Erreur ({e}) pour {url}, tentative {attempt+1}/{retries}")
time.sleep(delay)
print(f"Échec du téléchargement : {url}")
'''
Le chargement automatique des PDFs est désactivé. La base de données utilise les embeddings existants.
for url in PDF_URLS:
file_name = url.split("/")[-1]
file_path = os.path.join(SAVE_FOLDER, file_name)
if not os.path.exists(file_path):
download_pdf(url, file_path)
loader = PyPDFDirectoryLoader(SAVE_FOLDER)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
chunks = splitter.split_documents(docs)
print(f"{len(chunks)} morceaux extraits.")
embedding_model = HuggingFaceEmbeddings(model_name="shtilev/medical_embedded_v2")
client = MongoClient(MONGO_URI)
collection = client[DB_NAME][COLLECTION_NAME]
collection.delete_many({})
for chunk in chunks:
text = chunk.page_content
embedding = embedding_model.embed_query(text)
collection.insert_one({
"text": text,
"embedding": embedding
})
print("Tous les embeddings ont été insérés dans la base MongoDB.")
'''
def retrieve_relevant_context(query, embedding_model, mongo_collection, k=5):
query_embedding = embedding_model.embed_query(query)
docs = list(mongo_collection.find({}, {"text": 1, "embedding": 1}))
print(f"[DEBUG] Recherche de contexte pour: '{query}'")
print(f"[DEBUG] {len(docs)} documents trouvés dans la base de données")
if not docs:
print("[DEBUG] Aucun document dans la collection. RAG désactivé.")
return ""
# Calcul des similarités
similarities = []
for i, doc in enumerate(docs):
if "embedding" not in doc or not doc["embedding"]:
print(f"[DEBUG] Document {i} sans embedding")
continue
sim = cosine_similarity([query_embedding], [doc["embedding"]])[0][0]
similarities.append((sim, i, doc["text"]))
similarities.sort(reverse=True)
# Afficher les top k documents avec leurs scores
print("\n=== CONTEXTE SÉLECTIONNÉ ===")
top_k_docs = []
for i, (score, idx, text) in enumerate(similarities[:k]):
doc_preview = text[:100] + "..." if len(text) > 100 else text
print(f"Document #{i+1} (score: {score:.4f}): {doc_preview}")
top_k_docs.append(text)
print("==========================\n")
return "\n\n".join(top_k_docs)
async def get_admin_user(request: Request):
user = await get_current_user(request)
if user["role"] != "Administrateur":
raise HTTPException(status_code=403, detail="Accès interdit: Droits d'administrateur requis")
return user
try:
embedding_model = HuggingFaceEmbeddings(model_name="shtilev/medical_embedded_v2")
print("✅ Modèle d'embedding médical chargé avec succès")
except Exception as e:
print(f"Erreur lors du chargement du modèle d'embedding: {str(e)}")
embedding_model = None
doc_count = db.connaissances.count_documents({})
print(f"\n[DIAGNOSTIC] Collection 'connaissances': {doc_count} documents trouvés")
if doc_count == 0:
print("[AVERTISSEMENT] La collection est vide. Le système RAG ne fonctionnera pas!")
print("[AVERTISSEMENT] Veuillez charger des documents via l'API admin ou exécuter le script d'initialisation.")
else:
sample_doc = db.connaissances.find_one({})
has_embeddings = "embedding" in sample_doc and sample_doc["embedding"] is not None
print(f"[DIAGNOSTIC] Les documents ont des embeddings: {'✅ Oui' if has_embeddings else '❌ Non'}")
if not has_embeddings:
print("[AVERTISSEMENT] Les documents n'ont pas d'embeddings valides!")
@app.post("/api/admin/knowledge/upload")
async def upload_pdf(
file: UploadFile = File(...),
title: str = None,
tags: str = None,
current_user: dict = Depends(get_admin_user)
):
try:
if not file.filename.endswith('.pdf'):
raise HTTPException(status_code=400, detail="Le fichier doit être un PDF")
contents = await file.read()
pdf_file = BytesIO(contents)
pdf_reader = PyPDF2.PdfReader(pdf_file)
text_content = ""
for page_num in range(len(pdf_reader.pages)):
text_content += pdf_reader.pages[page_num].extract_text() + "\n"
embedding = None
if embedding_model:
try:
# Limiter la taille du texte si nécessaire
max_length = 5000
truncated_text = text_content[:max_length]
embedding = embedding_model.embed_query(truncated_text)
except Exception as e:
print(f"Erreur lors de la génération de l'embedding: {str(e)}")
doc_id = ObjectId()
pdf_path = f"files/{str(doc_id)}.pdf"
os.makedirs("files", exist_ok=True)
with open(pdf_path, "wb") as f:
pdf_file.seek(0)
f.write(contents)
document = {
"_id": doc_id,
"text": text_content,
"embedding": embedding,
"title": title or file.filename,
"tags": tags.split(",") if tags else [],
"uploaded_by": str(current_user["_id"]),
"upload_date": datetime.utcnow()
}
print(f"Tentative d'insertion du document avec ID: {doc_id}")
result = db.connaissances.insert_one(document)
print(f"Document inséré avec ID: {result.inserted_id}")
# Vérification de l'insertion
verification = db.connaissances.find_one({"_id": doc_id})
if verification:
print(f"Document vérifié et trouvé dans la base de données")
return {"success": True, "document_id": str(doc_id)}
else:
print(f"ERREUR: Document non trouvé après insertion")
return {"success": False, "error": "Document non trouvé après insertion"}
except Exception as e:
import traceback
print(f"Erreur lors de l'upload du PDF: {traceback.format_exc()}")
raise HTTPException(status_code=500, detail=f"Erreur: {str(e)}")
@app.get("/api/admin/knowledge")
async def list_documents(current_user: dict = Depends(get_admin_user)):
try:
documents = list(db.connaissances.find().sort("upload_date", -1))
result = []
for doc in documents:
doc_safe = {
"id": str(doc["_id"]),
"title": doc.get("title", "Sans titre"),
"tags": doc.get("tags", []),
"date": doc.get("upload_date").isoformat() if "upload_date" in doc else None,
"text_preview": doc.get("text", "")[:100] + "..." if len(doc.get("text", "")) > 100 else doc.get("text", "")
}
result.append(doc_safe)
return {"documents": result}
except Exception as e:
print(f"Erreur lors de la liste des documents: {str(e)}")
raise HTTPException(status_code=500, detail=f"Erreur: {str(e)}")
@app.delete("/api/admin/knowledge/{document_id}")
async def delete_document(document_id: str, current_user: dict = Depends(get_admin_user)):
try:
try:
doc_id = ObjectId(document_id)
except Exception:
raise HTTPException(status_code=400, detail="ID de document invalide")
# Vérifier si le document existe
document = db.connaissances.find_one({"_id": doc_id})
if not document:
raise HTTPException(status_code=404, detail="Document non trouvé")
# Supprimer le document de la base de données
result = db.connaissances.delete_one({"_id": doc_id})
if result.deleted_count == 0:
raise HTTPException(status_code=500, detail="Échec de la suppression du document")
# Supprimer le fichier PDF associé s'il existe
pdf_path = f"files/{document_id}.pdf"
if os.path.exists(pdf_path):
try:
os.remove(pdf_path)
print(f"Fichier supprimé: {pdf_path}")
except Exception as e:
print(f"Erreur lors de la suppression du fichier: {str(e)}")
return {"success": True, "message": "Document supprimé avec succès"}
except HTTPException as he:
raise he
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur lors de la suppression: {str(e)}")
@app.post("/api/login")
async def login(request: Request, response: Response):
try:
data = await request.json()
email = data.get("email")
password = data.get("password")
user = db.users.find_one({"email": email})
if not user or not bcrypt.verify(password, user["password"]):
raise HTTPException(status_code=401, detail="Email ou mot de passe incorrect")
session_id = secrets.token_hex(16)
user_id = str(user["_id"])
username = f"{user['prenom']} {user['nom']}"
db.sessions.insert_one({
"session_id": session_id,
"user_id": user_id,
"created_at": datetime.utcnow(),
"expires_at": datetime.utcnow() + timedelta(days=7)
})
response.set_cookie(
key="session_id",
value=session_id,
httponly=False,
max_age=7*24*60*60,
samesite="none",
secure=True,
path="/"
)
# Log pour débogage
print(f"Session créée: {session_id} pour l'utilisateur {user_id}")
return {
"success": True,
"username": username,
"user_id": user_id,
"session_id": session_id,
"role": user.get("role", "user")
}
except Exception as e:
print(f"Erreur login: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
async def get_current_user(request: Request):
session_id = request.cookies.get("session_id")
print(f"Cookie de session reçu: {session_id[:5] if session_id else 'None'}")
if not session_id:
auth_header = request.headers.get("Authorization")
if auth_header and auth_header.startswith("Bearer "):
session_id = auth_header.replace("Bearer ", "")
print(f"Session d'autorisation reçue: {session_id[:5]}...")
if not session_id:
session_id = request.query_params.get("session_id")
if session_id:
print(f"Session des paramètres de requête: {session_id[:5]}...")
if not session_id:
raise HTTPException(status_code=401, detail="Non authentifié - Aucune session trouvée")
session = db.sessions.find_one({
"session_id": session_id,
"expires_at": {"$gt": datetime.utcnow()}
})
if not session:
raise HTTPException(status_code=401, detail="Session expirée ou invalide")
user = db.users.find_one({"_id": ObjectId(session["user_id"])})
if not user:
raise HTTPException(status_code=401, detail="Utilisateur non trouvé")
return user
@app.post("/api/logout")
async def logout(request: Request, response: Response):
session_id = request.cookies.get("session_id")
if session_id:
db.sessions.delete_one({"session_id": session_id})
response.delete_cookie(key="session_id")
return {"success": True}
@app.post("/api/register")
async def register(request: Request):
try:
data = await request.json()
required_fields = ["prenom", "nom", "email", "password"]
for field in required_fields:
if not data.get(field):
raise HTTPException(status_code=400, detail=f"Le champ {field} est requis")
existing_user = db.users.find_one({"email": data["email"]})
if existing_user:
raise HTTPException(status_code=409, detail="Cet email est déjà utilisé")
hashed_password = bcrypt.hash(data["password"])
user = {
"prenom": data["prenom"],
"nom": data["nom"],
"email": data["email"],
"password": hashed_password,
"createdAt": datetime.utcnow(),
"role": data.get("role", "user"),
}
result = db.users.insert_one(user)
return {"message": "Utilisateur créé avec succès", "userId": str(result.inserted_id)}
except HTTPException as he:
raise he
except Exception as e:
import traceback
print(f"Erreur lors de l'inscription: {str(e)}")
print(traceback.format_exc())
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
@app.post("/api/embed")
async def embed(request: Request):
data = await request.json()
texts = data.get("texts", [])
try:
dummy_embedding = [[0.1, 0.2, 0.3] for _ in range(len(texts))]
return {"embeddings": dummy_embedding}
except Exception as e:
return {"error": str(e)}
@app.get("/invert")
async def invert(text: str):
return {
"original": text,
"inverted": text[::-1],
}
HF_TOKEN = os.getenv('REACT_APP_HF_TOKEN')
if not HF_TOKEN:
raise RuntimeError("Le token Hugging Face (HF_TOKEN) n'est pas défini dans les variables d'environnement.")
conversation_history = {}
hf_client = InferenceClient(token=HF_TOKEN)
@app.post("/api/chat")
async def chat(request: Request):
global conversation_history
# ① Lecture du JSON et extraction des champs
data = await request.json()
user_message = data.get("message", "").strip()
conversation_id = data.get("conversation_id")
if not user_message:
raise HTTPException(status_code=400, detail="Le champ 'message' est requis.")
current_user = None
try:
current_user = await get_current_user(request)
except HTTPException:
pass
current_tokens = 0
message_tokens = 0
if current_user and conversation_id:
conv = db.conversations.find_one({
"_id": ObjectId(conversation_id),
"user_id": str(current_user["_id"])
})
if conv:
current_tokens = conv.get("token_count", 0)
message_tokens = int(len(user_message.split()) * 1.3)
MAX_TOKENS = 2000
if current_tokens + message_tokens > MAX_TOKENS:
return JSONResponse({
"error": "token_limit_exceeded",
"message": "Cette conversation a atteint sa limite de taille. Veuillez en créer une nouvelle.",
"tokens_used": current_tokens,
"tokens_limit": MAX_TOKENS
}, status_code=403)
if conversation_id and current_user:
db.messages.insert_one({
"conversation_id": conversation_id,
"user_id": str(current_user["_id"]),
"sender": "user",
"text": user_message,
"timestamp": datetime.utcnow()
})
is_history_question = any(
phrase in user_message.lower()
for phrase in [
"ma première question", "ma précédente question", "ma dernière question",
"ce que j'ai demandé", "j'ai dit quoi", "quelles questions",
"c'était quoi ma", "quelle était ma", "mes questions"
]
)
if conversation_id not in conversation_history:
conversation_history[conversation_id] = []
# If there's existing conversation in DB, load it to memory
if current_user and conversation_id:
previous_messages = list(db.messages.find(
{"conversation_id": conversation_id}
).sort("timestamp", 1))
for msg in previous_messages:
if msg["sender"] == "user":
conversation_history[conversation_id].append(f"Question : {msg['text']}")
else:
conversation_history[conversation_id].append(f"Réponse : {msg['text']}")
if is_history_question:
actual_questions = []
if conversation_id in conversation_history:
for msg in conversation_history[conversation_id]:
if msg.startswith("Question : "):
q_text = msg.replace("Question : ", "")
# Ignorer les méta-questions qui parlent déjà de l'historique
is_meta = any(phrase in q_text.lower() for phrase in [
"ma première question", "ma précédente question", "ma dernière question",
"ce que j'ai demandé", "j'ai dit quoi", "quelles questions",
"c'était quoi ma", "quelle était ma", "mes questions"
])
if not is_meta:
actual_questions.append(q_text)
if not actual_questions:
return JSONResponse({
"response": "Vous n'avez pas encore posé de question dans cette conversation. C'est notre premier échange."
})
question_number = None
if any(p in user_message.lower() for p in ["première question", "1ère question", "1ere question"]):
question_number = 1
elif any(p in user_message.lower() for p in ["deuxième question", "2ème question", "2eme question", "seconde question"]):
question_number = 2
else:
import re
match = re.search(r'(\d+)[eèiéê]*m*e* question', user_message.lower())
if match:
try:
question_number = int(match.group(1))
except:
pass
if question_number is not None:
if 0 < question_number <= len(actual_questions):
suffix = "ère" if question_number == 1 else "ème"
return JSONResponse({
"response": f"Votre {question_number}{suffix} question était : \"{actual_questions[question_number-1]}\""
})
else:
return JSONResponse({
"response": f"Vous n'avez pas encore posé {question_number} questions dans cette conversation."
})
else:
if len(actual_questions) == 1:
return JSONResponse({
"response": f"Vous avez posé une seule question jusqu'à présent : \"{actual_questions[0]}\""
})
else:
question_list = "\n".join([f"{i+1}. {q}" for i, q in enumerate(actual_questions)])
return JSONResponse({
"response": f"Voici les questions que vous avez posées dans cette conversation :\n\n{question_list}"
})
context = None
if not is_history_question and embedding_model:
context = retrieve_relevant_context(user_message, embedding_model, db.connaissances, k=5)
if context and conversation_id:
conversation_history[conversation_id].append(f"Contexte : {context}")
if conversation_id:
conversation_history[conversation_id].append(f"Question : {user_message}")
system_prompt = (
"Tu es un chatbot spécialisé dans la santé mentale, et plus particulièrement la schizophrénie. "
"Tu réponds de façon fiable, claire et empathique, en t'appuyant uniquement sur des sources médicales et en français. "
)
enriched_context = ""
if conversation_id in conversation_history:
actual_questions = []
for msg in conversation_history[conversation_id]:
if msg.startswith("Question : "):
q_text = msg.replace("Question : ", "")
# Ignorer les méta-questions
is_meta = any(phrase in q_text.lower() for phrase in [
"ma première question", "ma précédente question", "ma dernière question",
"ce que j'ai demandé", "j'ai dit quoi", "quelles questions",
"c'était quoi ma", "quelle était ma", "mes questions"
])
if not is_meta and q_text != user_message:
actual_questions.append(q_text)
if actual_questions:
recent_questions = actual_questions[-5:] # 3 dernières questions
enriched_context += "Historique récent des questions:\n"
for i, q in enumerate(recent_questions):
enriched_context += f"- Question précédente {len(recent_questions)-i}: {q}\n"
enriched_context += "\n"
if context:
enriched_context += "Contexte médical pertinent:\n"
enriched_context += context
enriched_context += "\n\n"
if enriched_context:
system_prompt += (
f"\n\n{enriched_context}\n\n"
"Utilise ces informations pour répondre de manière plus précise et contextuelle. "
"Ne pas inventer d'informations. Si tu ne sais pas, redirige vers un professionnel de santé."
)
else:
system_prompt += (
"Tu dois répondre uniquement à partir de connaissances médicales factuelles. "
"Si tu ne sais pas répondre, indique-le clairement et suggère de consulter un professionnel de santé."
)
messages = [{"role": "system", "content": system_prompt}]
if conversation_id and len(conversation_history.get(conversation_id, [])) > 0:
history = conversation_history[conversation_id]
for i in range(0, min(20, len(history)-1), 2):
if i+1 < len(history):
if history[i].startswith("Question :"):
user_text = history[i].replace("Question : ", "")
messages.append({"role": "user", "content": user_text})
if history[i+1].startswith("Réponse :"):
assistant_text = history[i+1].replace("Réponse : ", "")
messages.append({"role": "assistant", "content": assistant_text})
messages.append({"role": "user", "content": user_message})
try:
completion = hf_client.chat.completions.create(
model="mistralai/Mistral-7B-Instruct-v0.3",
messages=messages,
max_tokens=400,
temperature=0.7,
timeout=15,
)
bot_response = completion.choices[0].message["content"].strip()
except Exception:
fallback = hf_client.text_generation(
model="mistralai/Mistral-7B-Instruct-v0.3",
prompt=f"<s>[INST] {system_prompt}\n\nQuestion: {user_message} [/INST]",
max_new_tokens=512,
temperature=0.7
)
bot_response = fallback
if conversation_id:
conversation_history[conversation_id].append(f"Réponse : {bot_response}")
if len(conversation_history[conversation_id]) > 50: # 25 exchanges
conversation_history[conversation_id] = conversation_history[conversation_id][-50:]
if conversation_id and current_user:
db.messages.insert_one({
"conversation_id": conversation_id,
"user_id": str(current_user["_id"]),
"sender": "assistant",
"text": bot_response,
"timestamp": datetime.utcnow()
})
response_tokens = int(len(bot_response.split()) * 1.3)
total_tokens = current_tokens + message_tokens + response_tokens
db.conversations.update_one(
{"_id": ObjectId(conversation_id)},
{"$set": {
"last_message": bot_response,
"updated_at": datetime.utcnow(),
"token_count": total_tokens
}}
)
return {"response": bot_response}
def simulate_token_count(text):
"""
Simule le comptage de tokens sans appeler d'API externe.
"""
if not text:
return 0
text = text.replace('\n', ' \n ')
spaces_and_punct = sum(1 for c in text if c.isspace() or c in ',.;:!?()[]{}"\'`-_=+<>/@#$%^&*|\\')
digits = sum(1 for c in text if c.isdigit())
words = text.split()
short_words = sum(1 for w in words if len(w) <= 2)
# Les URLs et codes consomment plus de tokens
code_blocks = len(re.findall(r'```[\s\S]*?```', text))
urls = len(re.findall(r'https?://\S+', text))
adjusted_length = len(text) - spaces_and_punct - digits - short_words
token_count = (
adjusted_length / 4 +
spaces_and_punct * 0.25 +
digits * 0.5 +
short_words * 0.5 +
code_blocks * 5 +
urls * 4
)
return int(token_count * 1.1) + 1
@app.get("/data")
async def get_data():
data = {"data": np.random.rand(100).tolist()}
return JSONResponse(data)
@app.get("/api/conversations")
async def get_conversations(current_user: dict = Depends(get_current_user)):
try:
user_id = str(current_user["_id"])
conversations = list(db.conversations.find(
{"user_id": user_id},
{"_id": 1, "title": 1, "date": 1, "time": 1, "last_message": 1, "created_at": 1}
).sort("created_at", -1))
for conv in conversations:
conv["_id"] = str(conv["_id"])
return {"conversations": conversations}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
@app.post("/api/conversations")
async def create_conversation(request: Request, current_user: dict = Depends(get_current_user)):
try:
data = await request.json()
user_id = str(current_user["_id"])
conversation = {
"user_id": user_id,
"title": data.get("title", "Nouvelle conversation"),
"date": data.get("date"),
"time": data.get("time"),
"last_message": data.get("message", ""),
"created_at": datetime.utcnow()
}
result = db.conversations.insert_one(conversation)
return {"conversation_id": str(result.inserted_id)}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
@app.post("/api/conversations/{conversation_id}/messages")
async def add_message(conversation_id: str, request: Request, current_user: dict = Depends(get_current_user)):
try:
data = await request.json()
user_id = str(current_user["_id"])
print(f"Ajout message: conversation_id={conversation_id}, sender={data.get('sender')}, text={data.get('text')[:20]}...")
conversation = db.conversations.find_one({
"_id": ObjectId(conversation_id),
"user_id": user_id
})
if not conversation:
raise HTTPException(status_code=404, detail="Conversation non trouvée")
message = {
"conversation_id": conversation_id,
"user_id": user_id,
"sender": data.get("sender", "user"),
"text": data.get("text", ""),
"timestamp": datetime.utcnow()
}
db.messages.insert_one(message)
db.conversations.update_one(
{"_id": ObjectId(conversation_id)},
{"$set": {"last_message": data.get("text", ""), "updated_at": datetime.utcnow()}}
)
return {"success": True}
except Exception as e:
print(f"Erreur lors de l'ajout d'un message: {str(e)}")
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
@app.get("/api/conversations/{conversation_id}/messages")
async def get_messages(conversation_id: str, current_user: dict = Depends(get_current_user)):
try:
user_id = str(current_user["_id"])
conversation = db.conversations.find_one({
"_id": ObjectId(conversation_id),
"user_id": user_id
})
if not conversation:
raise HTTPException(status_code=404, detail="Conversation non trouvée")
messages = list(db.messages.find(
{"conversation_id": conversation_id}
).sort("timestamp", 1))
for msg in messages:
msg["_id"] = str(msg["_id"])
if "timestamp" in msg:
msg["timestamp"] = msg["timestamp"].isoformat()
return {"messages": messages}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
@app.delete("/api/conversations/{conversation_id}")
async def delete_conversation(conversation_id: str, current_user: dict = Depends(get_current_user)):
try:
user_id = str(current_user["_id"])
result = db.conversations.delete_one({
"_id": ObjectId(conversation_id),
"user_id": user_id
})
if result.deleted_count == 0:
raise HTTPException(status_code=404, detail="Conversation non trouvée")
db.messages.delete_many({"conversation_id": conversation_id})
return {"success": True}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Erreur serveur: {str(e)}")
app.mount("/", StaticFiles(directory="static", html=True), name="static")
if __name__ == "__main__":
import uvicorn
print(args)
uvicorn.run(
"app:app",
host=args.host,
port=args.port,
reload=args.reload,
ssl_certfile=args.ssl_certfile,
ssl_keyfile=args.ssl_keyfile,
)